Optimization of a low-temperature combustion engine run with different compression ratios by using modified social group technique

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 7

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_BERE-1-1_002

تاریخ نمایه سازی: 22 آذر 1404

Abstract:

For the HCCI experiments, four different compression ratios were used (CR۹, CR۱۰, CR۱۱, and CR۱۲). The intake air temperatures varied between ۳۱۳ and ۳۷۳ K, while the engine speed changed from ۸۰۰ to ۱۸۰۰ rpm. Three fuel blends were used, i.e., RON۲۰, RON۴۰, and RON۶۰. The RON۶۰ indicates ۶۰% iso-octane and ۴۰% n-heptane. A modified social group optimization (MSGO) algorithm was used for HCCI optimization purposes. Regression modeling was first employed to calculate the mathematical relations between the factors (compression ratio, research octane number (RON), intake air temperature, engine speed, and lambda) and the responses (effective torque, IMEP, indicated thermal efficiency, specific fuel consumption, COV IMEP, and HC). FThe regression models fit the given observations well with a low prediction error. The calculated R^۲ obtained from this study show that the compression ratio (X_۱), RON (X_۲), intake air temperature (X_۳), engine speed (X_۴), and lambda (X_۵) are sufficient to model the responses (effective torque, IMEP, indicated thermal efficiency, specific fuel consumption, COV IMEP, and HC). ANOVA results show p-value < α (under the ۹۵% confidence type-I error= α=۵%), indicating that the model is significant (H۱ is true). Then MSGO is run via these mathematical models to determine the parameters with optimal optimization values. In the verification phase, ۱۳ additional experimental runs that were not used in the mathematical modeling phase were used. It was found that the regression models fit the observed values well with a low PE (%). MSGO algorithm suggested the best value for studied parameters as X۱=۱۱.۴۷, X۲=۶۰, X۳=۳۱۳, X۴=۸۰۰, and X۵=۱.۴۵. The verification shows satisfying results with a high accuracy. The optimized factor levels indicates that the effective torque, IMEP, and indicated thermal efficiency were maximized while the other responses were minimized. Therefore, the findings signify the potential of the MSGO algorithm for HCCI optimization.

Authors

Seyed Mohamamd Safieddin Ardebili

Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Ibham Veza

Department of Mechanical Engineering, Faculty of Engineering, Universitas Bung Karno, Jakarta Pusat, Indonesia

Aslan Deniz Karaoglan

Balikesir University, Department of Industrial Engineering, ۱۰۱۴۵ Balikesir, Turkey

Erol Ileri

National Defense University, Army NCO Vocational HE School, Department of Automotive Sciences, ۱۰۱۱۰ Balıkesir, Turkey

Mostafa Kiani Deh Kiani

Department of Biosystems Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Masoud Rabeti

Department of Mechanical Engineering, Faculty of Engineering, Sousangerd Branch, Islamic Azad University, Sousangerd, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abdelmalek, Z., Alamian, R., Safdari Shadloo, M., Maleki, A., & ...
  • Karaoglan, A. D., & Baydeniz, B. (۲۰۲۱). Optimizing Plastic Injection ...
  • Kocakulak, T., Babagiray, M., Nacak, Ç., Safieddin Ardebili, S. M., ...
  • Naik, A. (۲۰۲۱). Modified Social Group Optimization Algorithm. MATLAB Central ...
  • نمایش کامل مراجع