(Developing a Synergistic Data Science and AI Model to Enhance Decision-Making Accuracy in Data-Driven Organizations)

This With 6 Page And PDF Format Ready To Download

  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این :

Abstract:

In the digital transformation era, organizational decision-making increasingly depends on data quality and AI analytical power. This study proposes an integrated framework synergizing data science with advanced AI algorithms to enhance managerial decision accuracy, speed, and robustness. Three-Layer Hybrid Model: 1. Enterprise Data Preprocessing & Enrichment: Structured (ERP, CRM) and unstructured (email, reports, sensors) data unified via advanced ETL, normalization, Isolation Forest anomaly detection, and BERT-based semantic augmentation. 2. Multimodal Deep Learning: Hybrid network fusing CNNs (temporal/visual features), Bi-LSTM + Multi-Head Attention (historical decision sequences), and lightweight Transformers (DistilBERT-style, textual processing), combined through an adaptive Dynamic Fusion Layer with learned gating. 3. Predictive Decision Optimization: Deep model output injected into PPO-based Deep Reinforcement Learning (DRL) within an organizational Markov Decision Process (MDP), learning optimal policies under resource, risk, and uncertainty constraints. Simulations on 10,000 synthetic dynamic system scenarios show 35% accuracy, 42% convergence speed, and 28% noise resilience gains over baselines (Random Forest + Rule-based DSS). The framework enables deployable, interpretable, and uncertainty-resilient intelligent decision-support systems in data-driven organizations.

Authors

ماهان کاوه

McGill University, Mechanical Engineering, Faculty Member

مراجع و منابع این :

لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :
  • [1] Acosta, J. N., et al. (2022). Multimodal biomedical AI. ...
  • [2] Arevalo, J., et al. (2017). Gated multimodal units for ...
  • [3] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. ...
  • [4] Gandomi, A., & Haider, M. (2015). Beyond the hype: ...
  • [5] Haarnoja, T., et al. (2018). Soft actor-critic algorithms and ...
  • [6] Hubbs, C. D., et al. (2020). OR-Gym: A reinforcement ...
  • [7] Kimball, R., & Ross, M. (2013). The data warehouse ...
  • [8] Kiranyaz, S., et al. (2021). 1D convolutional neural networks ...
  • [9] Li, Y., et al. (2021). Deep learning for enterprise ...
  • [10] Liu, F. T., Ting, K. M., & Zhou, Z.-H. ...
  • [11] Oroojlooyjadid, A., et al. (2021). A deep Q-network for ...
  • [12] Ramachandram, D., & Taylor, G. W. (2017). Deep multimodal ...
  • [13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & ...
  • [14] Shao, Z., et al. (2022). Transformer-based multimodal fusion for ...
  • [15] Silver, D., et al. (2021). Reward is enough. Artificial ...
  • [16] Sterman, J. D. (2000). Business dynamics: Systems thinking and ...
  • [17] Stranders, R., et al. (2015). Near-optimal resource allocation under ...
  • [18] Xu, K., et al. (2019). Multimodal attention networks for ...
  • [19] Zhang, Y., et al. (2023). Multimodal financial forecasting with ...
  • نمایش کامل مراجع