Fuzzy Graph Similarity with Uncertainty and Cross-Level Interactions

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 30

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GADM-10-1_006

تاریخ نمایه سازی: 29 آذر 1404

Abstract:

Real-world systems often exhibit relationships with inherent vagueness and imprecision, which fuzzy graphs effectively capture. Determining how similar two fuzzy graphs are remains essential for pattern recognition, social network analysis, and molecular biology applications where both edge strengths and node attributes carry uncertainty. Conventional approaches to measuring graph similarity struggle with the subtle uncertainties that characterize fuzzy graph structures. This paper presents FuzzyCLSim, a deep learning architecture for computing fuzzy graph similarity that integrates uncertainty quantification via fuzzy set theory. The proposed approach comprises three main innovations: a fuzzy graph convolutional network (F-GCN) propagating membership degrees together with features, a fuzzy weighted bilinear tensor network (F-WBTN) capturing directional fuzzy relationships between graphs, and a cross-level fuzzy feature extraction module combining node-level with graph-level fuzzy embeddings. Experimental results across three benchmark datasets demonstrate substantial improvements over existing methods, with average MSE reductions of ۳۴\% and correlation gains of ۷\%, validating our uncertainty-aware design choices.

Authors

Shanookha Ali

Department of General Science, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE

Hossein Rashmanlou

Canadian Quantum Research Center, ۱۰۶-۴۶- Doyle Ave, Kelowna, British Columbia V۱Y ۰C۲ Canada

Amirmohammad Momeni Kohestani

Department of Mathematics, University of Mazandaran, Babolsar, Iran

D. Farshid Mofidnakhaei

Department of Physics, Sar. C., Islamic Azad University, Sari, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S. Ali, S. Mathew, J. N. Mordeson, and H. Rashmanlou, ...
  • S. Ali, S. Mathew, and J. N. Mordeson, Hamiltonian fuzzy ...
  • S. Ali, S. Mathew, and J. N. Mordeson, Containers and ...
  • Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, ...
  • Y. Bai, H. Ding, K. Gu, Y. Sun, and W. ...
  • H. Bunke and G. Allermann, Inexact graph matching for structural ...
  • H. Bunke and K. Shearer, A graph distance metric based ...
  • X. Gao, B. Xiao, D. Tao, and X. Li, A ...
  • S. Kosari, Z. Shao, Y. Rao, X. Liu, R. Cai, ...
  • S. Kosari, X. Qiang, J. Kacprzyk, Q. T. Ain, and ...
  • T. N. Kipf and M. Welling, Semi-supervised classification with graph ...
  • Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. ...
  • X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, ...
  • S. Foadian, R. Pourgholi, S. H. Hashem Tabasi, and J. ...
  • H. Rashmanlou, S. Samanta, M. Pal, and R. A. Borzooei, ...
  • H. Rashmanlou, M. Pal, R. A. Borzooei, F. Mofidnakhaei, and ...
  • A. Rosenfeld, Fuzzy graphs, in L. A. Zadeh, K. S. ...
  • M. Shoaib, S. Kosari, H. Rashmanlou, M. A. Malik, Y. ...
  • W. Tan, X. Gao, Y. Li, G. Wen, P. Cao, ...
  • R. Wang, T. Zhang, T. Yu, J. Yan, and X. ...
  • نمایش کامل مراجع