Ensemble Machine Learning Outperforms Traditional Models for High-Accuracy Cell Viability Classification in Flow Cytometry Data

Publish Year: 1404
نوع سند: مقاله کنفرانسی
زبان: English
View: 30

This Paper With 5 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ISME33_556

تاریخ نمایه سازی: 2 دی 1404

Abstract:

Flow cytometry is a cornerstone of modern biological research, yet its widespread adoption is hindered by cost and time constraints. This study explores machine learning (ML) to streamline flow cytometry workflows, focusing on classifying cell viability (live/apoptotic) using only morphological parameters (FSC/SSC). By evaluating ensemble models (Random Forest, XGBoost, CatBoost, LightGBM) and neural networks, it is demonstrated that ML achieves robust classification (ROC-AUC: ۰.۹۷, accuracy: ۹۱.۶%) while reducing reliance on fluorescence-based markers. The results highlight ML’s potential to enhance accessibility and cost-efficiency in flow cytometry.

Authors

Mohammad Amin Molaei

Master’s Student, Iran University of Science and Technology, Tehran

Seyedeh Sarah Salehi

Assistant Professor, Iran University of Science and Technology, Tehran