Intelligent Counterfeit Detection Through Hybrid Pattern Mining and Blockchain Traceability: A Drug Distribution Case Study
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 19
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JDAID-1-3_006
تاریخ نمایه سازی: 15 دی 1404
Abstract:
The growing number of exchange points in distribution systems has increased the risk of counterfeit product infiltration, posing serious threats to public health and economic stability. Existing anti-counterfeiting strategies, such as blockchain-based traceability and machine learning–driven anomaly detection, remain constrained by vulnerabilities to data manipulation and limited automation. To address these challenges, this study proposes a hybrid approach that integrates sequential pattern mining with blockchain infrastructure for trajectory-based counterfeit detection. The system applies the PrefixSpan algorithm in combination with the longest common subsequence method to detect anomalous trajectories in product distribution networks. Blockchain technology ensures immutability, transparency, and decentralized validation of distribution records, while smart contracts enable automated anomaly detection. Experimental evaluation on a real-world dataset, supplemented with simulated counterfeit trajectories, achieves an overall accuracy of ۸۷.۴% and an F۱-score of ۰.۸۴۳, outperforming existing models. Moreover, complexity analysis demonstrates the scalability of the proposed framework by offloading computationally intensive tasks to off-chain processes.
Keywords:
Authors
Meysam Jahani
Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
Fatemeh Raji
School of Computer Science and Informatics, De Montfort University, Leicester, United Kingdom
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :