An Ensemble Learning Framework for Credit Card Fraud Detection Using Machine Learning and Deep Learning
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 18
نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JDAID-1-3_003
تاریخ نمایه سازی: 15 دی 1404
Abstract:
The rapid growth of digital payment systems has heightened the need for accurate and scalable methods to detect credit card fraud. This study evaluates a range of machine learning and deep learning algorithms, including Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), XGBoost, Convolutional Neural Networks (CNN), Baseline MLP (Multi-Layer Perceptron), and Long Short-Term Memory (LSTM), to identify effective approaches for detecting fraudulent transactions. Based on comparative analysis, Random Forest and LSTM achieved the strongest individual performance, with accuracies exceeding ۹۶%. Building on these findings, a stacking ensemble model was constructed by integrating Random Forest and LSTM as base learners and Logistic Regression as the meta-classifier. The framework incorporates Convolutional Autoencoder (CAE) for feature extraction and Random Undersampling (RUS) with three resampling ratios (۱:۱, ۱:۵, and ۱:۱۰) to address class imbalance. Experimental results show that the ensemble model provides improved predictive accuracy compared with individual algorithms, achieving an accuracy of ۹۹.۹۸%, precision of ۹۹.۸۶%, and recall of ۹۹.۸۹% under a ۱:۱۰ resampling ratio. Rather than proposing a new algorithmic architecture, this study contributes a systematic and unified evaluation of widely used ML and DL approaches and demonstrates the effectiveness of integrating CAE, RUS, and a Random Forest–LSTM stacking ensemble in enhancing fraud detection performance.
Keywords:
Authors
Ehsan Hajizadeh
Amirkabir University of Technology, No. ۳۵۰, Hafez Ave, Valiasr Square, Tehran, Iran
Zahra Davoodian
Amirkabir University of Technology, No. ۳۵۰, Hafez Ave, Valiasr Square, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :