The Application of Artificial Intelligence in Human Resource Performance Appraisal: A Conceptual Framework for Responsible Implementation
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 21
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JDAID-1-3_002
تاریخ نمایه سازی: 15 دی 1404
Abstract:
This research investigates the fundamental challenges inherent in traditional performance appraisal systems, such as human cognitive biases and a lack of scalability, and analyzes the application of artificial intelligence (AI) as a solution to optimize these processes. The primary objective is to present a practical framework for the responsible implementation of AI, aimed at establishing more objective, equitable, and effective appraisal systems. This study employs an integrative review methodology (searching the Scopus database from ۲۰۱۹ onwards) combined with qualitative thematic analysis. Based on specific inclusion criteria (i.e., a focus on socio-technical challenges), ۹ specialized articles were selected for final analysis. The analysis of this corpus achieved thematic saturation. The thematic analysis led to the identification of four primary themes: (۱) limitations of traditional systems; (۲) key AI-driven opportunities, such as enhanced objectivity and continuous feedback; (۳) critical risks (e.g., Algorithmic Bias and the Black Box Problem); and (۴) implementation imperatives (e.g., the necessity of Human-in-the-Loop (HITL) Oversight and transparency). Ultimately, the study concludes that success is contingent upon human-machine synergy and proposes a three-stage Integrated Socio-Technical Systems (ISTS) Framework. This framework emphasizes Explainable AI (XAI) (XAI) and the preservation of human judgment. This study is conceptual in nature. The proposed framework offers a pathway for the sustainable and human-centric utilization of this technology, which necessitates empirical validation in future research.
Keywords:
Authors
Ali Mansoori
Master&#۰۳۹;s in Public Administration, Department of Public Administration, Faculty of Management and Economics, Tarbiat Modares University, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :