Video Coding Machine Architecture for Smart Urban Traffic Optimization with Deep Learning

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 34

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JDAID-1-3_001

تاریخ نمایه سازی: 15 دی 1404

Abstract:

Intelligent Transportation Systems (ITS) are essential for modern urban infrastructure but grapple with real-time processing of voluminous traffic video data amid bandwidth and latency limitations. This paper introduces a novel Video Coding Machine (VCM) architecture that synergistically combines Versatile Video Coding (VVC) with an adaptive bitrate optimization algorithm—driven by neural features—and a hybrid Convolutional Neural Network (CNN)–Recurrent Neural Network (RNN) model for optimized compression and congestion prediction. The VVC core, enhanced by dynamic quantization parameter (QP) adjustments, minimizes data volume while upholding perceptual quality, whereas the CNN extracts spatial features (e.g., vehicle density) and the RNN captures temporal dynamics for precise forecasting. Evaluated on diverse real-world datasets (Cityscapes, BDD۱۰۰K, Tehran traffic), the system attains ۹۴% prediction accuracy (with ۹۳% precision and ۹۵% recall), ۶۰% data reduction, and ۲۵% faster processing versus baselines like H.۲۶۴/AVC and H.۲۶۵/HEVC. This framework delivers a scalable, efficient solution for smart cities, fostering real-time ITS applications, substantial cost efficiencies in storage/transmission, and improved urban mobility/safety. By bridging advanced compression and deep learning, it advances sustainable traffic management paradigms.

Authors

Mehran Riki

Department of Electrical and Computer Engineering, Technical and Vocational University(TVU), Tehran, Iran

Fateme Mohammadi

Master’s Student in Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran.

Ehsan Eslami

Department of Computer Engineering, Faculty of Electrical and Computer Engineering,Velayat University, Iranshahr, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :