Architecting Intelligent Revenue Systems: AI-Driven Transformation in B۲B SaaS Platforms
Publish place: 3rd International Conference on Industrial Marketing
Publish Year: 1404
نوع سند: مقاله کنفرانسی
زبان: English
View: 19
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIMM03_005
تاریخ نمایه سازی: 17 دی 1404
Abstract:
This research examines artificial intelligence transformation of traditional sales processes into automated revenue systems within B۲B SaaS environments. Through systematic literature analysis of contemporary publications (۲۰۲۳-۲۰۲۴) and comprehensive case study of HubSpot implementation, we investigate AI architectural foundations for lead-to-cash automation. Our mixed-methods approach reveals machine learning ensembles achieve ۹۴% accuracy in lead qualification while AI-CRM integration reduces sales cycles by ۴۱%. The HubSpot case demonstrates ۳۵% increase in qualified leads and ۲۷% improvement in deal closure rates through strategic human-AI collaboration. Quantitative analysis shows significant improvements in marketing efficiency and sales productivity. AI-driven systems substantially enhance revenue predictability and operational performance, though data quality management and ethical implementation challenges require continued attention. This study provides validated architectural guidance for organizations pursuing AI-powered revenue transformation in competitive digital markets.
Keywords:
Authors
Mahsa Yaghoubzadeh
MSc in Business Management, E-Commerce, Arak,Iran