Firefly Optimization Algorithm for Multi-Objective Job Scheduling in Cloud Computing
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 25
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JRMDE-4-4_008
تاریخ نمایه سازی: 18 دی 1404
Abstract:
Due to the increasing use of the Internet of Things, efficient task scheduling in cloud computing has become increasingly important with the aim of maximizing the use of available resources, reducing energy consumption, and enhancing the quality of service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to improve scheduling efficiency and minimize the overall completion time in cloud environments. For this purpose, twelve distinct scenarios were designed in the Cooja Contiki simulator environment with the perspective of computationally intensive, input/output intensive, and mixed workloads, and the overall completion time results obtained with the Min-Min and GA-PSO-Min methods were compared and the better performance of the method was confirmed. Due to the increasing use of the Internet of Things, efficient task scheduling in cloud computing has become increasingly important with the aim of maximizing the use of available resources, reducing energy consumption, and enhancing the quality of service (QoS). In this paper, we use the Firefly Optimization (FFO) algorithm to improve scheduling efficiency and minimize the overall completion time in cloud environments. For this purpose, twelve distinct scenarios were designed in the Cooja Contiki simulator environment with the perspective of computationally intensive, input/output intensive, and mixed workloads, and the overall completion time results obtained with the Min-Min and GA-PSO-Min methods were compared and the better performance of the method was confirmed.
Keywords:
Firefly Optimization Algorithm , Internet of Things , Cloud Computing , Job Scheduling , Total Time Spent , Efficiency in Energy Use , Scalability and Multi-Objective Optimization
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :