Diagnosing Death Anxiety with AI in Diabetics and Phobias and Distraught Dreams
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 19
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TRANS-6-1_001
تاریخ نمایه سازی: 4 بهمن 1404
Abstract:
Artificial intelligence (AI) offers significant potential for detecting symptoms of death anxiety and improving both diagnostic accuracy and therapeutic strategies. This study seeks to provide healthcare professionals with more efficient tools to manage death anxiety in individuals with diabetes, phobias, and sleep disorders. While mental health concerns have traditionally been explored within social frameworks, AI is increasingly recognized as a valuable resource in psychological care. This paper presents an integrative analysis of the relationship between diabetes, phobias, sleep disturbances, and death anxiety, focusing on research conducted from ۲۰۱۸ to ۲۰۲۳ using Latent Dirichlet Allocation (LDA) thematic modeling. Findings suggest that investigating the overlap of these conditions may offer meaningful insights for future studies. Importantly, AI appears to enhance the early identification and treatment of anxiety, particularly anxiety related to mortality. By analyzing sensor data with AI algorithms, early indicators of anxiety can be detected, allowing timely intervention and improved patient outcomes. The study utilized the Web of Science database, applying search terms such as “diabetes,” “phobia,” and “sleep disorders.” The LDA model revealed hidden semantic structures and calculated co-occurrence metrics to evaluate thematic coherence. Overall, this research highlights AI’s critical role in the detection and management of death anxiety and emphasizes the need for continued investigation in this domain.
Keywords:
Authors
M. Khadempir
Department of Sports Pathology and Corrective Movements, Farhangian University, Mashhad, Iran
R. Rahimi
Department of Elementary Sciences, Faculty of Elementary Sciences, Farhangian University, Mashhad, Iran
P. Hamidi
Department of Counseling and Guidance, Faculty of Science, Islamic Azad University of Qochan Branch, Qochan, Iran
E. Ghaderi
Department of Psychology, Faculty of Psychology, Payam Noor University, Chenaran, Iran
M. Hoghooghi
Department of Business Administration, Faculty of Management, Payam Noor University, Chenaran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :