Boosting S U Component Classifier applied for Face Localization

Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,439

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICEE15_158

تاریخ نمایه سازی: 17 بهمن 1385

Abstract:

Boosting is a general methodfor improving the accuracy of any given learning algorithm. In this pctper we employ combination of Adaboost with Support Vector Machine (SVM) as component classffiers to be used in Face Detection Task Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance ofthe proposed method is overall superior to previotu adaboost approaches.

Keywords:

Face Detection , Cascaded Classifiers , Adaboost , Support Vector Machine (SVM)

Authors

Seyyed Majid valiollahzadeh

Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abolghasem Sayadiyan

Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Mohammad Nazari

Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Schapire, R. E., Freund, Y., October 1998, Boosting the margin: ...
  • 42 9.81 ا _ Adaboost with Decision Trees ...
  • Kuncheva, L. _ and Whitaker, C. J. , 2002, Using ...
  • Schwenk , H. and Bengio.Y, 2000, Boosting neural networks. Nueral ...
  • Melville P. and Mooney. R. J , Mar2005. Creating diversity ...
  • T. Windeatt. Diversity measures for multiple classifier system aralysis ard ...
  • V. Vapnik. Statistical Learring Theory. John Wiley and Sons Inc., ...
  • B. Scholkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, ...
  • G. Valentini and T. G. Dietterich. Bias-variance aralysis of support ...
  • Freund, Y., Schapire, R., Aug 1997 40A decisior- theoretic generalization ...
  • Schapire R. E., Y. Singer, Dec 1999 "Improved boosting algorithms ...
  • Friedman, J., Hastie, T. and R. Tibshirani, July 1998. _ ...
  • Dietterich, T. G., Aug 2000 _ experimental comparison of three ...
  • Papageorgiou, C., Oren, M., Poggio, T. _ 1998, A general ...
  • Viola, P., Jones, M., Dec. 2001, "Rapid Object Detectior Using ...
  • Rowley, H., Baluja, S., Kanade, T.1998, Neural retwork-based face detectior. ...
  • Li, S. Z., EE, Zhang, Z. Q. , sept. 2004 ...
  • Haykin, S., July 1998 , Neural retworks : A comprehensive ...
  • Lienhart, R., Kuranov, A., and Pisarevsky , V, 2003. "Empirical ...
  • schapire. R. E., 2002, The boosting approach to machine learning: ...
  • Breiman. L. , 1996, Bagging predictors. Machine Learning, 24:123-140. ...
  • Opitz, D. and Maclin, R., 1999, Popular ersemble methods: _ ...
  • Bauer , E. and Kohavi , R., Jul 1999, An ...
  • نمایش کامل مراجع