Brain Tumor Classification Using Magnetic Resonance Images and Residual Convolutional Neural Networks

Publish Year: 1404
نوع سند: مقاله کنفرانسی
زبان: English
View: 8

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

SECONGRESS03_108

تاریخ نمایه سازی: 20 بهمن 1404

Abstract:

This study presents a novel approach for classifying brain tumor MRI images into four categories—glioma, meningioma, no tumor, and pituitary tumor—using a residual convolutional neural network (CNN) enhanced with wavelet denoising and contrast enhancement. The methodology addresses class imbalance and image noise through preprocessing and weighted loss functions. The model, trained on a dataset of ۳,۶۵۹ images, achieved a test accuracy of ۹۱.۶۵% after early stopping at epoch ۵۴. Detailed analysis of precision, recall, and F۱-scores from the confusion matrix highlights robust performance, particularly for the majority classes, with potential for improvement in minority class detection.

Keywords:

Magnetic Resonane Imagin , Convolutional Neural Network , MRI , CNN , Residual Convolutional Neural Network , ResNet

Authors

Mahdi Alikahi

Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran

Mohammad MohammadZadeh

Medical Radiation Engineering Department, Shahid Beheshti University, Tehran, Iran