Variational approach to (۴+۱)-dimensional Boiti–Leon–Manna–Pempinelli equation

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 3

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JCAM-57-2_010

تاریخ نمایه سازی: 25 بهمن 1404

Abstract:

The (۴+۱)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is a typical high-order nonlinear integrable partial differential equation (PDE), which plays a crucial role in describing multi-dimensional nonlinear wave phenomena in plasma physics, fluid mechanics, and nonlinear optics. However, its high dimensionality (four spatial variables + one time variable) and strong nonlinear coupling pose significant challenges to constructing a variational formulation and solving soliton solutions. To address this issue, this work focuses on the variational method for the (۴+۱)-dimensional BLMP equation and proposes a construction strategy for an approximate variational formulation based on the semi-inverse method. Through two-step variable transformations (order-reduction transformation and auxiliary potential function introduction), the high-order and nonlinear terms of the original equation are simplified, and the approximate form of the Lagrangian density F is derived. Consequently, an approximate variational formulation of the (۴+۱)-dimensional BLMP equation is obtained, and consistency verification confirms that the extremum condition of the functional is exactly equivalent to the solution of the original equation. Notably, the approximate form of F not only balances computational efficiency and physical accuracy but also provides guidance for the improvement of the original equation from an energy perspective. A prominent open problem arising from this work—the exact determination of F from the variational derivative constraint equations—invites mathematical enthusiasts and researchers in nonlinear PDEs to explore innovative solutions, which will advance the general theory of variational principles for high-dimensional nonlinear integrable systems. The research results offer an effective theoretical tool for solving the (۴+۱)-dimensional BLMP equation and analyzing its dynamic characteristics, with broad application potential in simulating multi-dimensional nonlinear wave phenomena.

Authors

Chen Zhong

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Hong Lin

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Yue Cheng

School of Information Engineering, Yango University, Fuzhou ۳۵۰۰۱۵, China

Ji-Huan He

Department of Mathematical Sciences, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, Pincode – ۶۰۲۱۰۵, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • L. Wang, Y. Tang, Lump solutions of the (۳+۱)-dimensional Boiti-Leon-Manna-Pempinelli ...
  • B. Yasmeen, K. Ahmad, A. Akgül, Q. Al-Mdallal, Analytic solutions ...
  • H. Esen, A. Secer, M. Ozisik, M. Bayram, Obtaining soliton ...
  • M. Hendy, M. Ezzat, E. Al-lobani, A. Hassan, A PROBLEM ...
  • Y. El-dib, A heuristic review on the homotopy perturbation method ...
  • W. Hou, N. Qie, J. He, J. Ma, M. Gao, ...
  • Y.-P. Liu, J.-H. He, A fast and accurate estimation of ...
  • Y. Tian, Y. Shao, Y. Shen, J.-H. He, A variational ...
  • C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) ...
  • C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) ...
  • S. Kachapi, S. Kachapi, COMPARISON OF NONCLASSICAL CONTROLLERS ON ‎NONLINEAR ...
  • G. Feng, A CIRCULAR SECTOR VIBRATION SYSTEM IN A POROUS ...
  • C.-H. He, C. Liu, Variational principle for singular waves, Chaos, ...
  • K.-L. Wang, C.-H. He, A remark on Wang's fractal variational ...
  • J.-H. He, Variational principles for some nonlinear partial differential equations ...
  • J. Lu, M.-J. Chen, Variational approach to time-space fractional coupled ...
  • C.-H. Shang, H.-A. Yi, Solitary wave solution for the non-linear ...
  • Y. Tian, Variational principle and periodic wave solutionals for elastic ...
  • M. Hart-Simmons, A. Biswas, Y. Yıldırım, S. P. Moshokoa, A. ...
  • X.-Q. Cao, S.-H. Xie, H.-Z. Leng, W.-L. Tian, J.-L. Yao, ...
  • J. Sun, Fractal solitary waves of the (۳+ ۱)-dimensional fractal ...
  • A. Alsisi, Analytical and numerical solutions to the Klein–Gordon model ...
  • A. Biswas, A. H. Kara, N. AGYEMAN–BOBIE, M. HART–SIMMONS, S. ...
  • F.-Y. Wang, J.-S. Sun, Solitary wave solutions of the Navier-Stokes ...
  • K. Wang, K. Yan, F. Shi, G. Li, X. Liu, ...
  • نمایش کامل مراجع