An Intelligent K-Means Algorithm for Location-Allocation and Vehicle Routing Problem

Publish Year: 1393
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,378

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

IESM02_008

تاریخ نمایه سازی: 12 دی 1393

Abstract:

Capacitated location-allocation routing problem is about delivering the goods from depot centers to customers. The aims of this problem is to determine the optimum number of depots at the strategic decision level to place factories and allocate customers to these depots, while establishing tour of the vehicle between depots and customers must be built at the tactical or operational levels to supply customers. In recent years several researchers have focused on Location Routing Problem (LRP). We consider in this paper location-allocation routing problem. Our objective is to minimize the routing and location-allocation costs which are main contribution in supply chain costs. Location and routing decisions are interdependent and studies have shown that the overall system cost may be excessive if they are tackled separately. These problems are NP-hard and the combination of them is NP-hard too and solving this problem in medium and large size problem is difficult. In this study, we want to use the business intelligence methods for simplifying the LRP and to solve this problem in large size with exact algorithm. We propose an Intelligent K-means Algorithm (IKMS) for clustering the customer nodes. Then we locate the depots with other k-means algorithm. Finally we allocate these customers to depots. After these steps, we solve the Traveling Salesman Problem (TSP) for each cluster independently, and determine the tour of each vehicle. We will show that our algorithm presents good solutions

Keywords:

Capacitated location allocation routing problem , Intelligent K-means algorithm , clustering , ANOVA test

Authors

Maede Mokhtarinejad۱

Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran

Abbas Ahmadi۲

Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran

Behrooz Karimi

Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • . Zare Mehrjerdi, Y. Nadizadeh, A. (2013) Using greedy clustering ...
  • . Crainic et al. (2008) C lustering-Based Heuristics for the ...
  • . Glicksman, H. and Penn, M. (2008) Approximation algorithms for ...
  • . Harks, T. Konig , F. G. and Matuschke, J. ...
  • . Carnes, T. and Shmoys, D. B. (2011) Primal-dual schema ...
  • _ Second Nationl Conference on Industrial Engineering & Sustainable Management ...
  • . Boudahri, F. Aggoune -Mtalaa, W. Bennekrouf, M. and Sari, ...
  • . Barreto, S et al. (2007) Using clustering analysis in ...
  • . Manzour-al-Aj dad, S. Torabi, S. and Salhi, S. (2012) ...
  • . Yu, V. Lin, S.-W. Lee, W. and Ting, C-J. ...
  • . Jokar, A. and Sahraeian, R. (2012) A heuristic based ...
  • . Nallusamy, R et al. (2009) Optimization of multiple vehicle ...
  • _ Second Nationl Conference on Industrial Engineering & Sustainable Management ...
  • نمایش کامل مراجع