Portfolio optimization problem with default risk
Publish place: 3rd Conference on Financial Mathematics and Applications
Publish Year: 1391
Type: Conference paper
Language: English
View: 820
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
CFMA03_167
Index date: 6 June 2015
Portfolio optimization problem with default risk abstract
In this paper, we consider a stochastic portfolio optimization problem with default risk on an infinite time horizon. An investor dynamically chooses a consumption rate and allocates the wealth into the securities: a perpetual defaultable bond, a money market account with the constant return and a default-free risky asset. The goal is to choose the optimal investment to maximize the infinite horizon expected discounted power utility of the consumption policies (controls). The default risk premium and the default intensity are assumed to rely on a stochastic factor formulated by a diffusion process. We study the optimal allocation and consumption policies to maximize the infinite horizon expected discounted non-log HARA utility of the consumption, and we use the dynamic programming principle to derive the Hamilton–Jacobi–Bellman (HJB) equation. Then we explore the HJB equation by employing a so-called sub–super solution approach. The optimal allocation and consumption policies are obtained in terms of the classical solution to a PDE. Finally, we get an explicit formula for the optimal control strategy. In this article The soloutions are then used in portfolio management subject to default risk and derive the optimal investment and consumption policies.
Portfolio optimization problem with default risk Keywords:
Portfolio optimization problem with default risk authors
M Mazidi
Faculty of Mathematics, Yazd University, yazd, Iran
A Delavarkhalafi
Faculty of Mathematics, Yazd University, yazd, Iran
A Mokhtari
Faculty of Mathematics, Yazd University, yazd, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :