Energy Efficiency Metrics and Techniques in Cloud Data Centers
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 811
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
KRMS01_091
تاریخ نمایه سازی: 14 آذر 1394
Abstract:
Data centers are one of the major components of ICT field that have had significant growth to meet the needs of this area. In addition, the data centers are a computational resource for cloud computing and to have a good response time for a large number of their customers are often comprised of thousands of servers. In such a large scale, the energy consumption of data centers has increased extraordinarily. Increasing the power of consumption leads to increasing operational costs as well as greenhouse gas emissions. Thus, optimizing energy consumption in data centers is essential to reduce operational costs and protect the environment. Servers consume considerable amount of energy in cloud data center, thus optimizing the energy consumption of them has a significant role in reducing energy consumption. This paper provides a comprehensive study of the green metrics in the fields of energy efficiency in data centers, then classifies energy optimization approaches of servers in the data center and also provides a comprehensive review of techniques and their applications in each approach of recent research.
Keywords:
Authors
Shima Sokout jahromi
M.S, Department of Computer Engineering, Collage of Engineering, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
Mansourr Aminilari
Assistant professor, Department of Computer Engineering, Collage of Engineering and Information Technology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
Amin Tousi
Faculty member, Department of Computer Engineering, Collage of Engineering, Fars Science and Research Branch. Islamic Azad University, Fars, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :