A Novel Algorithm for Predicting Travel Time Navigation System
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 908
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
TTC14_350
تاریخ نمایه سازی: 30 دی 1394
Abstract:
The new government policy is to encourage people to motivate the travelers toswitch from private vehicles to public transportation network. In the meantime,employing the intelligent transport system which consist of two parts includedprivate sector and public sector by predicting the dynamic travel time can help totraveler to be aware of the latest traffic information. To achive the specifiedobjective, the calculation of traffic flow, demand of passenger and transportmeans availability are vital to consider in this study. Equiblirium algorithm is acrucial methodology part for predicting the trip assignment. This articlerepresents a server and cloient windows to allow travelers to access to the latestdynamic traffic information. For this purpose the traveller are able to be aware ofthe travel time and other details of the travel route via the internet or SMSsystem. Hence, a case study based on an actual public and private network inMashhad, Iran is chosen as a case study area. The result shows that the accuracyof the proposed method indicated reasonable R۲ of ۰.۸۵۳ for the evening rushtraffic period. This indicates that the TSP developed in the present study is areliable and suitable tool to guide travelers and Companies.
Keywords:
Authors
Foad Shokri
PhD of transportation, Mashhad Traffic & Transportation organization
Mani Hazeghi
M.S.C in road & transportation, Mashhad Traffic & Transportation organization
Farshad Firoozei
M.S.C in road & transportation, Mashhad Traffic & Transportation organization
Reza Norouzi
PhD candidate of road & transportation, Mashhad Traffic & Transportation organization
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :