Effect of TLD Frequency Detuning on the Seismic Performance of Steel Moment Frames
Publish place: International Conference on New Research in Civil Engineering, Architecture and Urban Planning
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 888
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CONFUCIAN01_005
تاریخ نمایه سازی: 28 اسفند 1394
Abstract:
Building vibration has become one of the major concerns to civil engineering structures. Use of a Tuned Liquid Damper (TLD) as a vibration control mechanism is an interesting approach that is now widely accepted and frequently applied in civil engineering. A TLD is a passive control system, which utilizes fluid sloshing motion to dissipate the lateral excitation energy. Basically, TLD is a frequency dependent device. In this study, the TLD is modelled as anequivalent Tuned Mass Damper according to Yu`s model. Even though the natural frequency of the TLD is always chosen to match the natural frequency of the structure, change in the frequency of the primary structure or amplitude dependent frequency of the TLD results indetuned TLD system. Therefore, this paper aims at evaluating the efficiency of detuned TLD system for some tuning ratios (0.8~1.2). The seismic performance of existing intermediate steel moment resisting frames equipped with TLD are investigated based on nonlinear response dynamic history analysis. Result shows tuning ratio in the range 0.9 to 1.1 has slight influence on the seismic response of the structure.
Keywords:
Authors
Sareh Akbarpoor
Graduate Student, Civil & Environmental Eng. School, Shiraz University of Technology
Seyed Mehdi Dehghan Banadaki
Assistant Professor, Civil & Environmental Eng. School, Shiraz University of Technology
Mohammad Ali Hadianfard
Associate Professor, Civil & Environmental Eng. School, Shiraz University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :