Investigation of Wax Thickness Rate in Pipelines Using ANFIS
Publish place: کنفرانس بین المللی مهندسی و علوم کاربردی
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 477
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEASCONF01_276
تاریخ نمایه سازی: 9 مرداد 1395
Abstract:
One of the ongoing challenges in the oil industry is wax deposits on the oil and gas pipelines. The majority of crude oils produced include a considerable amount of wax. When the temperature is the below of specified value, wax deposits occurs from crude oil and condensates. Therefore, by reducing the oil temperature increases the wax deposition. Wax deposits mainly create problems in pipelines and equipment of oil wells. Also, wax deposits in pipes increases the pressure drop and reduce production and reduces production efficiency. According to the reasons mentioned, forecasting wax thickness requires accurate and secure way. In this study, by using the fuzzy and neural-fuzzy systems a model was evaluated for predicting the wax thickness in single-phase and turbulent flows. Comparing the experimental results with the predicted values by the fuzzy and fuzzy neural systems indicated that the predicted values by these models have a good agreement with the experimental data and it would show the reliability of these models. The average of absolute deviation error in fuzzy and neuro-fuzzy systems is 6.1577 and 6.2148 percent respectively. Results of this forecast show favorable performance of modeling conducted for predicting the rate of wax thickness in single-phase and turbulent flows
Keywords:
Authors
Aboutaleb Ghadami
Departments of Chemical & Petroleum Engineering, Yasouj Branch, Islamic Azad University, Yasouj, Iran
Jadval Ghadam
Departments of Chemical & Petroleum Engineering, Yasouj Branch, Islamic Azad University, Yasouj, Iran
Vahid Kamali
Departments of Chemical & Petroleum Engineering, Yasouj Branch, Islamic Azad University, Yasouj, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :