Implementation of QRD_MGS algorithm for space-time adaptive processing based on FPGAs
Publish place: The first international conference of modern research engineers in electricity and computer
Publish Year: 1395
Type: Conference paper
Language: English
View: 616
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
CBCONF01_0515
Index date: 6 September 2016
Implementation of QRD_MGS algorithm for space-time adaptive processing based on FPGAs abstract
Space Time Adaptive Processing (STAP) can curbthe effects of interference significantly. However, the calculationof STAP weights, including QR decomposition (QRD) andsolving linear equations needs drastic computation. This paper,focuses on improving the QRD algorithm by modified gramschmidt(QRD_MGS) method and presents an efficient FPGAdesign by adding a parameter called vector size that, enables theimplementation of multi-vector. In this work, the structure ofQRD_MGS algorithm is adjusted for effective floating pointimplementation, and the design is described in detail. Theresource utilization, operating frequency, power consumption,delay and throughput measured and reported for several matrixsizes and vector sizes. The results show that the proposed methodcan satisfy the requirement of real-time computation of adaptiveweights and to be used for implement the full system of STAP.
Implementation of QRD_MGS algorithm for space-time adaptive processing based on FPGAs Keywords:
Implementation of QRD_MGS algorithm for space-time adaptive processing based on FPGAs authors
Narjes Hasanikhah
Department of Electrical Engineering Science and Research branch, Islamic Azad University Tehran, Iran
Siavash Amin-Nejad
Department of Electrical Engineering The University of Guilan Rasht, Iran
Ghafar Darvish
Department of Electrical Engineering Science and Research branch, Islamic Azad University Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :