Detection of Epileptic Seizures from EEG Signals Using EM Algorithm and Frequency Analysis
Publish place: The first international conference of modern research engineers in electricity and computer
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 784
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CBCONF01_0574
تاریخ نمایه سازی: 16 شهریور 1395
Abstract:
This paper proposes a new method based on Expectation Maximization algorithm (EM) and Gaussian Mixture model for classification of electroencephalogram (EEG) signals. The detection of epileptic form discharges in the EEG is an important component in the diagnosis of epilepsy. Decision making was performed in two stages: feature extraction using the Fast Fourier Transform (FFT) first and then the probability density functions values are trained with the Expectation Maximization algorithm as a clustering method. Two types of EEG signals were used as input for the classifier with two discrete outputs: normal and epileptic. At last the performance of the proposed method is proved in terms of classification accuracies by simulation results. The results confirmed the maximum mean classification accuracy of 100% in classifying of the EEG signals.
Keywords:
Electroencephalogram (EEG) , Fast Fourier Transform (FFT) , Expectation-Maximization (EM) algorithm , Epileptic seizure
Authors
Ali Momeni
Control Engineering Department Shiraz University of Technology Shiraz, Iran
Elham Bazregarzadeh
Control Engineering Department Shiraz University of Technology Shiraz, Iran
Behroz Safarinejadian
Control Engineering Department Shiraz University of Technology Shiraz, Iran, ۷۱۵۵۷-۱۳۸۷۶
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :