Reconfiguration and Capacitor Allocation in Distribution Systems to Reduce Power Losses and Improve Voltage Profiles using Ant Lion Algorithm
Publish place: Third National Conference on Electrical Engineering of Iran
Publish Year: 1394
Type: Conference paper
Language: English
View: 622
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
INCEE03_077
Index date: 1 November 2016
Reconfiguration and Capacitor Allocation in Distribution Systems to Reduce Power Losses and Improve Voltage Profiles using Ant Lion Algorithm abstract
Distribution networks are widest part of electrical grids. Due to low voltage and large expansion, the most of electric energy losses is related to these networks. Reconfiguration and capacitor placement are used in distribution networks, mainly to reduce power loss and improve voltage profile. In this paper, the optimal size and location of capacitors along with reconfiguration is investigated in IEEE 33-bus and 69-bus standard distribution systems. The purpose of optimization is power loss reduction and voltage profile improvement while satisfying radial network and power quality and practical constraints. Ant Lion optimizer (ALO) algorithm is used for this purpose. The obtained results show impact of these two methods and ALO algorithm in improving the system performance.
Reconfiguration and Capacitor Allocation in Distribution Systems to Reduce Power Losses and Improve Voltage Profiles using Ant Lion Algorithm Keywords:
Ant Lion optimizer (ALO) , voltage profile improvement , distribution system reconfiguration , power loss reduction , optimal capacitor placement
Reconfiguration and Capacitor Allocation in Distribution Systems to Reduce Power Losses and Improve Voltage Profiles using Ant Lion Algorithm authors
Maryam Shokouhi
Islamic Azad university, Khomeinisahr Branch,
Shahrokh Shojaeian
Islamic Azad university, Khomeinisahr Branch,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :