Sediment transport evaluation in pipes using neuro-fuzzy approach

Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 627

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICCACS01_008

تاریخ نمایه سازی: 25 آذر 1395

Abstract:

Accurate prediction of sediment discharge is very important to a wide range of water resources projects. This paper investigated the use of neuro-fuzzy approach (ANFIS) as data driven approach in bedload discharge estimation in sewer pipes with rigid boundary condition. An attempt was then made to appraisal some of the existing bed sediment transport equations, and the accuracy of ANFIS-best modes compared with those bedload formulas. Determination Coefficient (DC), Correlation Coefficient (R) and Root Mean Square Errors (RSME) statistics were used for evaluating the accuracy of the models. The obtained results revealed that the proposed technique for considerd condition perform quite well compared to commonly used formulas of bedload transport in pipes

Authors

Kiyoumars Roushangar

Associate Professor, Department of Civil Engineering, University of Tabriz, Tabriz, Iran,

Roghayeh Ghasempour

M.Sc student, Department of Civil Engineering, University of Tabriz, Tabriz, Iran,

Hassan sani

Master Graduated of Tabriz University, Department of Civil Engineering, Hydraulic Structures

Farhad Alizadeh Afshar

M.Sc ,Civil Engineering

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Mayerle, R. Sediment transport in rigid boundary channels. University of ...
  • Vongvis essomjai, N., et al. Non- deposition design criteria for ...
  • Ota J. J. and Perrusquia, G. S. Particle velocity and ...
  • Roushangar, K., et al. Studying of flow model and bed ...
  • Kisi, O., et al. River suspended sediment modeling using fuzzy ...
  • Lohani AK, et al. Deriving s tage-di scharge-s ediment concentration ...
  • Nourani V, et al. Two hybrid Artificial Intelligence approaches for ...
  • Jang, J. ANFIS: adaptive -network-b ased fuzzy inference system. IEEE ...
  • Kaya, M.D, et al. To estimate the design of functional ...
  • Takagi, T., Sugeno, M. Fuzzy identification of systems and its ...
  • May, R. W. P., et al. Self-cleansing conditions for sewers ...
  • Ghani A. Sediment Transport in Sewers. Ph.D Thesis, University of ...
  • Laursen E.M The hydraulics of a storm-drain system for sediment ...
  • Ambrose, _ H. The transportation of sand in pipes - ...
  • Craven, J. P. The transportation of sand in pipes - ...
  • May, R.W.P., et al. Development of design methodology for self-cleansing ...
  • نمایش کامل مراجع