Logistic Regression Analysis of Breast Cancer From Mammographic Evaluation
Publish place: 11th Iranian conference on Biomedical Engineering
Publish Year: 1382
Type: Conference paper
Language: English
View: 2,038
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICBME11_037
Index date: 17 July 2008
Logistic Regression Analysis of Breast Cancer From Mammographic Evaluation abstract
Logistic regression analysis is used to differentiate malignant from benign in a group of patients with proved breast lesions on the base of morphological data extracted from the conventional mammogram. Our database include 122 patients' records consisting 12 qualitative variables. The database is randomly divided into the training and validation samples including 82 and 40 patients' records respectively. The training and validation samples are used to construct the logistic regression modelas a classifier and to validate its performance respectively. Finally, important criteria such as sensitivity, specificity, accuracy and receiver operating characteristic curve (ROC) analysis for this method as well as that of the radiologist are compared. Our results show that the logistic regression model is able to classify correctly 31 out of 40 cases presented in the validation sample. Comparing the output of this method with that of the radiologist shows a reasonable diagnostic accuracy 78%, a high specificity (81%) and a moderate sensitivity (72%).
Logistic Regression Analysis of Breast Cancer From Mammographic Evaluation Keywords:
Logistic Regression Analysis of Breast Cancer From Mammographic Evaluation authors
Parviz Abdolmaleki Ph.D
Department of Biophysics , Tarbiat Modares University, Tehran.
Masomeh Tahmasebi M.Sc
Department of Biophysics , Tarbiat Modares University, Tehran.
Majid Rohandeh M.Sc.
Department of Biophysics , Tarbiat Modares University, Tehran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :