An Improved Confidence-Based Boosting Face Recognition Algorithm under Large Pose Variations

Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 479

This Paper With 8 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

CEPS04_067

تاریخ نمایه سازی: 11 مرداد 1396

Abstract:

one of the significant remaining challenges in face recognition, which has attracted much attention, is face recognition under various poses. So, this article introduces a new method for face recognition under various poses. The proposed method attempts to address the problem by introducing a new Confidence-based boosting algorithm to improve the performance of the tied factor analysis (TFA) method called confidence- based tied factor analysis (CTFA). In the present work, the confAdaboost.M1 algorithm is applied on the TFA generative method, which obtained state-of-the-art face recognition performances on large pose variations. Actually, the TFA is regarded as a base classifier or weak learner in the ConfAdaboost.M1 algorithm. The training data likelihood weight is updated by the ConfAdaboost.M1 algorithm. In the proposed method similar to the TFA, at the recognition step, a face image is used at a non-frontal pose. Then to improve the performance, the Gabor filter is applied at the preprocess step. The new method has evaluated on the FERET database and compared with the original TFA method in recent studies, the results of which have demonstrated superior performance under large pose variations

Keywords:

Authors

Elahe Ataelahi

Dept. of Computer Engineering Islamic Azad University, Qazvin Branch, Qazvin, Iran

Azam Bastanfard

Dept. Engineering, Islamic Azad University, Karaj Branch, Karaj, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Haghighat, S. Zonouz, M. Abde l-Mottaleb, ،CloudID: Trustworthy cloud-based ...
  • S.J.D. Prince, J.H. Elder, J. Warrell, F.M. Felisberti, ،.Tied Factor ...
  • _ Tho Ho, R. Chellappa, ،، P ose-Invariant Face Recognition ...
  • X. Zhang, Y. Gao, ،Face Recognition Across Pose: _ Review, ...
  • A. Sharma, M. Al Haj, J. Choi, L. S. Davis, ...
  • R. Jafri, H. R. Arabnia, ،0A Survey of Face Recognition ...
  • Ch. Ding, D. Tao, ،A Comprehens ive Survey on Pose- ...
  • Y. Freund, R. E. Schapire, _ dec i sion-theoretic generalization ...
  • A. Reiss, D. Stricker, G. Hendeby, «Confidenc e-based multiclass AdaBoost ...
  • Materials Science, 2012, Macao, vol. 25, pp.800-807, doi: 1 0. ...
  • multi-class AdaBoost Unifying؛ Y. Sun, S. Todorovic, J. Li, algorithms ...
  • M. Jones, P. Viola, ،Face Recognition Using Boosted Local Features, ...
  • X. Cai, Ch. Wang, B. Xiao, X. Chen, J. Zhou, ...
  • M. Zhou, W. Hong, M. Stephen, «Gabor wavelets and AdaBoost ...
  • WORKSHO P ON B IOMETRIC R EC OGNITION SYSTEM, IN ...
  • C. Shan, sh. Gong, P. W. McOwan, ،#Facial expression recognition ...
  • P. Karthigayani, S. Sridhar, ،DECISION TREE-BASED O CCLUSION DETECTI ON ...
  • M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. ...
  • نمایش کامل مراجع