Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 381

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-5-1_005

تاریخ نمایه سازی: 19 تیر 1398

Abstract:

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on their reliability and reduction in the size of the computational work. This study provides an analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.

Keywords:

Modified Adomian Decomposition Method , Modified Variational Iteration Method , Caputo Fractional Volterra-Fredholm Integro-Differential Equation

Authors

Ahmed A. Hamoud

Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, ۴۳۱۰۰۴, India | Department of Mathematics, Taiz University, Taiz, Yemen

Kirtiwant P. Ghadle

Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, ۴۳۱۰۰۴, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abel, N., Solution de quelques problemes a laided integrales definites, ...
  • Abbaoui, K., Cherruault, Y., Convergence of Adomian’s method applied to ...
  • Adomian, G., A review of the decomposition method in applied ...
  • Alkan, S., Hatipoglu, V., Approximate solutions of Volterra-Fredholm integro-differential equations ...
  • AL-Smadi, M., Gumah, G., On the homotopy analysis method for ...
  • Hamoud, A., Ghadle, K., Usage of the homotopy analysis method ...
  • Ghorbani, A., Saberi-Nadjafi, J., An effective modification of He’s variational ...
  • Hamoud, A., Ghadle, K., Bani Issa, M., Giniswamy, Existence and ...
  • Hamoud, A., Ghadle, K., The approximate solutions of fractional Volterra-Fredholm ...
  • Hamoud, A., Bani Issa,  M., Ghadle, K., Existence and uniqueness ...
  • Hamoud, A., Ghadle, K., Modified Adomian decomposition method for solving ...
  • Ma, X., Huang, C., Numerical solution of fractional integro-differential equations ...
  • Mittal, R., Nigam, R., Solution of fractional integro-differential equations by ...
  • Wazwaz, A., A reliable modification of Adomian decomposition method, Applied ...
  • Yang, C., Hou, J., Numerical solution of integro-differential equations of ...
  • Zhang, X., Tang, B., He, Y., Homotopy analysis method for ...
  • Zhou, Y., Basic theory of fractional differential equations, Singapore: World ...
  • Zurigat, M., Momani, S., Alawneh, A., Homotopy analysis method for ...
  • Hamoud, A., Azeez, A., Ghadle, K., A study of some ...
  • Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P., ...
  • Agarwal, P., Choi, J., Paris, R.B., Extended Riemann-Liouville fractional derivative ...
  • Tariboon, J., Ntouyas, S.K., Agarwal, P., New concepts of fractional ...
  • Zhang, X., Agarwal, P., Liu, Z., Peng, H., The general ...
  • Agarwal, P., Choi, J., Fractional calculus operators and their image ...
  • Liu, X., Zhang, L., Agarwal, P., Wang, G., On some ...
  • Hamoud, A., Ghadle, K., Existence and uniqueness of the solution ...
  • Baltaeva, U., Agarwal, P., Boundary–value problems for the third-order loaded ...
  • نمایش کامل مراجع