RUSDR: Class Imbalance-aware Ensemble Learning for Drug Repurposing

Publish Year: 1398
نوع سند: مقاله کنفرانسی
زبان: English
View: 413

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICIKT10_041

تاریخ نمایه سازی: 5 بهمن 1398

Abstract:

A common problem in many application domains such as drug repurposing, i.e. identifying new indications for known drugs, is class imbalance. There are some approaches to dealing with class imbalance problem, including sampling methods, cost-sensitive learning methods, one-class classification methods, and ensemble learning methods. In this paper, we proposed an approach, called RUSBoosted Tree Drug Repurposing (RUSDR), to predict candidate drug-indications. Initially, a multi-view data of drugs and diseases were used for feature vector construction. Then, we used an ensemble learning-based algorithm capable of addressing class imbalance problem. The experimental results showed improvements in prediction performance over the existing works and the importance of dealing with the class imbalance problem in the data.

Authors

Seyedeh Shaghayegh Sadeghi

Department of Computer Engineering Alzahra University Tehran, Iran

Mohammad Reza Keyvanpour

Department of Computer Engineering Alzahra University Tehran, Iran