A New Adaptive Load-Shedding and Restoration Strategy for Autonomous Operation of Microgrids: A Real-Time Study

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 315

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-33-1_010

تاریخ نمایه سازی: 25 خرداد 1399

Abstract:

Islanding operation is one of the main features of a MicroGrid (MG), which is realized regarding the presence of distributed energy resources (DERs). However, in order to deal with the control challenges, which an MG faces during island operation, particularly when the transition is associated with certain excessive load, an efficient control strategy is required. This paper introduces a Central Management Agent (CMA) which maintains the stability of the MG, once it is islanded, by controlling an Energy Storage System (ESS) and a Central Synchronous Generator (CSG). Further, this paper proposes a new adaptive load-shedding/restoration schemes that calculates the amount of power imbalance based on frequency measurements combined with the mean value of the frequency gradient. The primacy of the proposed scheme over existing schemes, like instantaneous frequency gradient-based load shedding scheme, is its robustness against frequency oscillations. Moreover, the proposed method acts compatible with the control routine of DERs and the intermittent nature of the PV plant. As another salient feature of this paper, a Hardware In the Loop (HIL) testbed for real-time simulation is developed under which the proposed scheme and related communication with CMA along with other components are evaluated. The obtained results show that the control strategy can confidently conserve the stability of the MG in islanded mode and meet smooth reconnection to the grid-connected mode.

Authors

Mehdi Farzinfar

School of Engineering, Damghan University, Damghan, Iran

Nirmal-Kumar C Nair

Power Systems Group of Department of Electrical and Computer Engineering at University of Auckland, Auckland, New Zealand

Momen Bahadornejad

Unitec Institute of Technology, Auckland, New Zealand