Failure Pressure Prediction of Semi Spherical GFRP Shells in Thermal Environment
Publish place: Mechanics of Advanced Composite Structures، Vol: 7، Issue: 1
Publish Year: 1399
Type: Journal paper
Language: English
View: 460
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_MACS-7-1_010
Index date: 4 July 2020
Failure Pressure Prediction of Semi Spherical GFRP Shells in Thermal Environment abstract
In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic modal functions of the plate are expanded in terms of finite Fourier series to satisfy compatibility along with the interface between plate and fluid. The electric potential is assumed to have a cosine distribution along the thickness of the plate in order to satisfy the Maxwell equation. After deriving the governing equations applying Hamilton’s principle, the natural frequencies of the fluid-structure system with simply supported boundary conditions are computed using the Galerkin method. The model is compared to the available results in the literature, and consequently the effects of different variables such as depth of fluid, the width of fluid, plate thickness, and aspect ratio on natural frequencies and mode shapes are displayed.
Failure Pressure Prediction of Semi Spherical GFRP Shells in Thermal Environment Keywords:
Failure Pressure Prediction of Semi Spherical GFRP Shells in Thermal Environment authors
Mahmood Farhadinia
Materials and Manufacturing Technologies Complex, MUT, Tehran, Iran
Fatemeh Ghaemi
Materials and Manufacturing Technologies Complex, MUT, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :