Estimating the parameters of Philip infiltration equation using artificial neural network

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 314

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IAR-38-2_004

تاریخ نمایه سازی: 6 مرداد 1399

Abstract:

Infiltration rate is one of the most important parameters used in irrigation water management. Direct measurement of infiltration process is laborious, time consuming and expensive. Therefore, in this study application of some indirect methods such as artificial neural networks (ANNs) for prediction of this phenomenon was investigated. Different ANNs structures including two training algorithms (TrainLM and TrainBR), two transfer functions (Tansig and Logsig), and different combinations of the input variables such as sand, silt, and clay fractions, bulk density (BD), soil organic matter (SOM), cumulative infiltration (CI) and elapsed time were used to predict sorption coefficient (S) and hydraulic conductivity (A) in Philip equation (I=S*t0.5+A*t), which corresponded to 30 soil samples from study areas located in the Agricultural College, Shiraz University, (Bajgah). A two-hidden layer ANNs with two and three neurons in the hidden layers, respectively and TrainLM algorithm performed the best in predicting S when Logsig and Tansig were used. Silt+ clay+ sand+ time+ CI combination was the most basic influential variables for the S prediction. Furthermore, a two-hidden layer ANNs with two and three neurons in the hidden layers, respectively and TrainBR algorithm performed the best in predicting A when Tansig and Tansig were used. Silt +clay +sand +BD + OM+ time+ CI combination was the most basic influential variables for A prediction. Results showed that increasing the hidden layers and input variables significantly improved the ANNs performance. The coefficient of determination (R2) confirmed that the ANNs predictions for A (84.6 %) fit data better than S (77.5 %).

Authors

N. Abrishami-Shirazi

Department of Irrigation, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

A.R. Sepaskhah

Department of Irrigation, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: ...
  • Blake, G., Hartge, K. p., & methods, m. (1986). Bulk ...
  • Science Society of America, American Society of Agronomy. ...
  • Brown, M., & Chris, H. (1994). Neurofuzzy adaptive modeling and ...
  • Cosby, B., Hornberger, G., Clapp, R., & Ginn, T. (1984). ...
  • characteristics to the physical properties of soils.  Water Resources Research, ...
  • Gardner, W. R. (1958). Some steady-state solutions of the unsaturated ...
  • Gee, G., & Bauder, G. (1986). Particle-size analysis. In A. ...
  • and Mineralogical Methods (pp. 383-409). American Society of Agronomy - ...
  • Ghobadian, B., Rahimi, H., Nikbakht, A., Najafi, G., & Yusaf, ...
  • emission analysis using waste cooking biodiesel fuel with an artificial ...
  • Graupe, D. (2013). Principles of Artificial Neural Networks (Vol. 7). ...
  • Green, H. W., & Ampt, G. A. (1911). Studies on ...
  • Hagan, M., Demuth, H., & Beale, M. (1996). Neural network ...
  • Hillel, D., & Gardner, W. (1970). Transient infiltration into crust-topped ...
  • Holtan, H. N. (1961). A Concept for infiltration estimates in ...
  • Horton, R. E. (1940). Approach toward a physical interpretation of ...
  • Ibn Ibrahimy, M., Ahsan, R., & Khalifa, O. O. (2013). ...
  • Igbadun, H., Othman, M., & Ajayi, A. (2016). Performance of ...
  • Jain, S., Singh, V., & van Genuchten, M. (2004). Analysis ...
  • Kim, S. (2017). MATLAB Deep Learning With Machine Learning, Neural ...
  • Kostiakov, A. V. (1932). On the dynamics of the coefficient ...
  • Kumar, M., Raghuwanshi, N., Singh, R., Wallender, W., & WO, ...
  • artificial neural network. Journal of Irrigation and Drainage Engineering, 128(4), ...
  • Lei, Z. D., Yang, S. X., & Xie, S. C. ...
  • Lili, M., Bralts, V. F., Yinghua, P., Han, L., & ...
  • Machiwal, D., Jha, M. K., & Mal, B. (2006). Modelling ...
  • Mehrabi, F., & Sepaskhah, A. R. (2013). Spatial variability of ...
  • Merdun, H., Çınar, Ö., Meral, R., & Apan, M. (2006). ...
  • Minasny, B., & McBratney, A. B. (2002). The method for ...
  • Moosavi, A. A., & Sepaskhah, A. (2011). Artificial neural networks ...
  • Moosavizadeh-Mojarad, R., & Sepaskhah, A. R. (2011). Comparison between rice ...
  • Nelson, D., & Sommers, L. (1996). Total carbon, organic carbon, ...
  • Noori, R., Karbassi, A., & Salman Sabahi, M. (2010). Evaluation ...
  • Ogbe, V., Mudiare, O., & Oyebode, M. (2008). Evaluation of ...
  • Pachepsky, Y. A., Timlin, D., & Varallyay, G. (1996). Artificial ...
  • Parasuraman, K., Elshorbagy, A., & Si, B. C. (2006). Estimating ...
  • Philip, J. R. (1957). The theory of infiltration: 1. The ...
  • Richter, Q. Y. R. A. J. (1989). A new method ...
  • Sablani, S., Ramaswamy, H., Sreekanth, S., & Prasher, S. (1997). ...
  • Saxton, K. E., Rawls, W. J., Romberger, J. S., & ...
  • Schaap, M. G., Leij, F. J., & van Genuchten, M. ...
  • Shaalan, K., Riad, M., Amer, A., & Baraka, H. (1999). ...
  • Sharma, A., Sahoo, P. K., Tripathi, R., & Meher, L. ...
  • Sy, N. L. (2006). Modelling the infiltration process with a ...
  • Van Genuchten, M. T. (1980). A closed-form equation for predicting ...
  • Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). ...
  • Zhang, G., & Hu, M. Y. (1998). Neural network forecasting ...
  • نمایش کامل مراجع