Overcoming the uncertainty in a research reactor LOCA in level-1 PSA; Fuzzy based fault-tree/event-tree analysis

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 507

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JOIE-13-2_018

تاریخ نمایه سازی: 26 شهریور 1399

Abstract:

Probabilistic safety assessment (PSA) which plays a crucial role in risk evaluation is a quantitative approach intended to demonstrate how a nuclear reactor meets the safety margins as part of the licensing process. Despite PSA merits, some shortcomings associated with the final results exist. Conventional PSA uses crisp values to represent the failure probabilities of basic events. This causes a high level of uncertainty due to the inherent imprecision and vagueness of failure input data. In this paper, to tackle this imperfection, a fuzzy approach is employed with fault tree analysis and event tree analysis. Thus, instead of using the crisp values, a set of fuzzy numbers is applied as failure probabilities of basic events. Hence, in the fault tree and event tree analysis, the top events and the end-states frequencies are treated as fuzzy numbers. By introducing some fuzzy importance measures the critical components which contribute maximum to the system failure and total uncertainty are identified. As a practical example, under redesign Iranian heavy water research reactor loss of coolant accident is studied. The results show that the reactor protection system has the largest index in sequences lead to a core meltdown. In addition, the emergency core cooling system has a main role in preventing abnormal conditions.

Authors

Masoud Mohsendokht

Department of Nuclear Engineering, Faculty of New Sciences and Technologies, University of Isfahan, Isfahan, Iran

Mehdi Hashemi-Tilehnoee

Department of Mechanical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Aldemir, T. (2013). A survey of dynamic  methodologies for probabilistic ...
  • Ferdous, R., Khan, F., Sadiq, R., Amyotte, P., & Veitch, ...
  • Guimarães, A.C.F., Lapa, C.M.F., & Moreira, M.L. (2011a). Fuzzy methodology ...
  • Guimarães, A.C.F., Lapa, C.M.F., Simões Filho, F.F.L., & Cabral, D.C. ...
  • Gupta, S., Bhattacharya, J. (2007). Reliability analysis of a conveyor ...
  • Hasannejad, H., Seyyedi, S.M., & Hashemi-Tilehnoee, M. (2019). Utilizing an ...
  • Hashemi-Tilehnoee, M., Pazirandeh, A., & Tashakor, S. (2010). HAZOP-study on ...
  • Hryniewicz, O. (2007). Fuzzy Sets in the Evaluation of Reliability. ...
  • Huang, D., Chen, T., & Wang, M.J.J. (2001). A fuzzy ...
  • IAEA-International Atomic Energy Agency (1992) Procedure for conducting probabilistic safety ...
  • IAEA-TECDOC-930 (1997) Generic component reliability data for research reactor PSA. ...
  • IAEA-TECDOC-478 (1998) Component reliability data for use in probabilistic safety ...
  • Kančev, D., Čepin, M., & Gjorgiev, B. (2014). Development and ...
  • Keller, M., & Modarres, M. (2005). A historical overview of ...
  • Klir, G.J., & Folger, T.A. (1988). Fuzzy Sets, Uncertainty and Information. Prentice ...
  • Lee, W.S., Grosh, D.L., Tillman, F.A., & Lie, C.H. (1985). ...
  • Lee, J., & McCormick, N. (2012). Risk and Safety Analysis of Nuclear ...
  • Liang, G., & Wang, M. (1993). Evaluating human reliability using fuzzy ...
  • Mahmood, Y.A., Ahmadi, A., Verma, A.K., Srividya, A., Kumar, U. ...
  • Markowski, A., & Mannan, M. (2008). Fuzzy risk matrix. Journal ...
  • Martorell, S., Carlos, A., Sanchez, A., & Serradell, V. (2000). ...
  • Miller, G. (1956). The magical number seven, plus or minus ...
  • Misra, K.B., Weber, G.G. (1990). Use of fuzzy set theory ...
  • Modarres, M., Kaminskiy, M.P., & Krivtsov, V. (2009). Reliability Engineering and Risk ...
  • Onisawa T (1988) An approach to human reliability in man-machine ...
  • Onisawa ,T. (1989). Fuzzy theory in reliability analysis. Fuzzy Sets ...
  • Onisawa T (1990) An application of fuzzy concepts to modelling ...
  • Purba, J.H., Lu, J., Ruan, D., & Zhang, G. (2012). ...
  • Purba, J.H., Lu, J., Zhang, G. (2014). An intelligent system ...
  • Purba, J.H. (2014a). Fuzzy probability on reliability study of nuclear ...
  • Purba, J.H. (2014b). A fuzzy-based reliability approach to evaluate basic ...
  • Purba, J.H., Lu, J., Zhang, G., & Pedrycz, W. (2014). ...
  • Purba, J.H., Tjahyani, D.T.S., Ekariansyah, A.S., & Tjahjono, H. (2015). ...
  • Rao K.D., Kushwaha, H.S., Verma, A.K., & Srividya, A. (2007). ...
  • Ross, T.J. (2004). Development of Membership Functions. In: Fuzzy Logic ...
  • Wolkenhauer, O. (2001). Fuzzy mathematics. In: Data Engineering: Fuzzy Mathematics ...
  • Woo, T.H., Noh, S.W., Kim, T.W., Kang,  K.M., & Kim, ...
  • Zadeh, L.A. (1965). Fuzzy sets. Information and control 8(3): 338–353. ...
  • Zimmmermann, H.J., (1991). Fuzzy set theory and its applications, 2nd. ...
  • نمایش کامل مراجع