Action Change Detection in Video Based on HOG

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 284

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JECEI-8-1_012

تاریخ نمایه سازی: 23 آذر 1399

Abstract:

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one action class. Therefore, we need to break down a video sequence into sub-sequences, each containing only a single action class. Methods: In this paper, we develop an unsupervised action change detection method to detect the time of actions change, without classifying the actions. In this method, a silhouette-based framework will be used for action representation. This representation uses xt patterns. The xt pattern is a selected frame of xty volume. This volume is achieved by rotating the traditional space-time volume and displacing its axes. In xty volume, each frame consists of two axes (x) and time (t), and y value specifies the frame number. Results: To test the performance of the proposed method, we created 105 artificial videos using the Weizmann dataset, as well as time-continuous camera-captured video. The experiments have been conducted on this dataset. The precision of the proposed method was 98.13% and the recall was 100%. Conclusion: The proposed unsupervised approach can detect action changes with a high precision. Therefore, it can be useful in combination with an action recognition method for designing an integrated action recognition system.

Authors

M. Fakhredanesh

Faculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iran

S. Roostaie

Faculty of Electrical and Computer, Malek Ashtar University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • [1] K. Guo, P. Ishwar, J. Konrad, "Action recognition from ...
  • [2] K. Guo, Action recognition using log-covariance matrices of silhouette ...
  • [3] S.-R. Ke, H. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. ...
  • [4] Z. Weng and Y. J. J. o. E. I. ...
  • [5] H. Wang, A. Kläser, C. Schmid, C.-L. J. I. ...
  • [6] M. Ristivojevic, J. J. I. T. o. I. P. ...
  • [7] Y. Pritch, A. Rav-Acha, S. J. I. T. o. ...
  • [8] J. J. I. C. m. Konrad, "Videopsy: Dissecting visual ...
  • [9] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. ...
  • [10] D. K. Vishwakarma, R. J. E. S. w. A. ...
  • [11] N. Amraji, L. Mu, M. Milanova, "Shape–based human actions ...
  • [12] A. F. Bobick, J. W. Davis, "The recognition of ...
  • [13] M. Sharif, Muhammad Attique Khan, Farooq Zahid, Jamal Hussain ...
  • [14] C. C. A. Chen, J, "Recognizing human action from ...
  • [15] S. Sehgal, "Human Activity Recognition Using BPNN Classifier on ...
  • [16] M. A. Khan, Tallha Akram, Muhammad Sharif, Nazeer Muhammad, ...
  • [17] N. Dalal, B. Triggs, "Histograms of oriented gradients for ...
  • [18] Y. Zhu, W. Chen, G. J. I. Guo, V. ...
  • [19] J. C. Niebles, H. Wang, L. J. I. j. ...
  • [20] L. Zhang, R. Khusainov, J. Chiverton, "Practical action recognition ...
  • [21] M. A. Khan, Kashif Javed, Sajid Ali Khan, Tanzila ...
  • [22]N. Hussain, Muhammad Attique Khan, Muhammad Sharif, Sajid Ali Khan, ...
  • [23]H. Arshad, Muhammad Attique Khan, Muhammad Irfan Sharif, Mussarat Yasmin, ...
  • [24] N. M. Oliver, B. Rosario, A. P. J. I. ...
  • [25] Y. Zhang et al., "Modeling temporal interactions with interval ...
  • [26] F. Negin, F. J. I. T. R. Bremond, "Human ...
  • [27] W. Ding, K. Liu, X. Fu, F. Cheng, "Profile ...
  • [28] Y. Zhou, A. J. P. R. L. Ming, "Human ...
  •  [29] B. Saghafi, D. Rajan, W. J. P. A. Li, ...
  • [30] S. Das, M. Koperski, F. Bremond, G. Francesca, "A ...
  • [31] Z. Liu Z. Wang, "Action recognition with low observational ...
  • [32] S. Sempena, N. U. Maulidevi, P. R. Aryan, "Human ...
  • [33] S.-R. Ke, "Recognition of Human Actions based on 3D ...
  • [34] D. C. Luvizon, H. Tabia, D. J. P. R. ...
  • [35] M. Hoai, Z.-Z. Lan, F. De la Torre, "Joint ...
  • [36] M. Basseville, I. V. Nikiforov, Detection of abrupt changes: ...
  • [37] L. Gorelick, M. Blank, E. Shechtman, M. Irani, R. ...
  • [38] K. Guo, P. Ishwar, J. Konrad, "Action recognition in ...
  • [39] A. Elgammal, R. Duraiswami, D. Harwood, L. S. J. ...
  • نمایش کامل مراجع