بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی
Publish place: Journal Of Modeling in Engineering، Vol: 17، Issue: 56
Publish Year: 1398
Type: Journal paper
Language: Persian
View: 363
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JME-17-56_029
Index date: 10 March 2021
بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی abstract
در این پژوهش ضریب شکست نمونه های خالص الکلهای نوع اول و مخلوطهای دوتایی آنها به دو روش تجربی و مدلسازی مورد بررسی قرار گرفت. در روش تجربی از دستگاه رفرکتومتر برای اندازه گیری ضریب شکست استفاده شد و در روش مدلسازی، با به کارگیری شبکه عصبی مصنوعی پرسپترون چندلایه مدلسازی شد. به همین منظور ورودی های شبکه مربوط به مواد خالص، دما، جرم مولکولی و گروه های عاملی CH3، CH2 و OH و برای مخلوط ها کسر مولی، جرم مولکولی جزء اول، جرم مولکولی جزء دوم و گروه های عاملی CH3، CH2 و OH و ضریب شکست به عنوان تنها خروجی شبکه در نظر گرفته شده است. در طراحی شبکه عصبی، 70% داده ها تحت عنوان تابع آموزش، 15% به عنوان تابع اعتبارسنجی و 15% به عنوان تابع آزمایش در نظر گرفته شده است. در این مدلسازی، نمونه های خالص در نورون 10 با میانگین درصد خطای نسبی مطلق 08457/0 و نمونه های مخلوط در نورون 12 با میانگین درصد خطای نسبی مطلق 07121/0 بهینه شده است. با مقایسه روش آزمایشگاهی و مدلسازی در نمودارهای عملکرد، انطباق خوبی بین دو روش وجود دارد که نشاندهنده کیفیت مدل ارائه شده می باشد
بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی Keywords:
بررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی authors
فاطمه کرد
دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل
کامیار موقرنژاد
گروه آموزشی ترموسینتیک- دانشکده مهندسی شیمی- دانشگاه صنعتی نوشیروانی بابل
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :