An approximate method based on Bernstein polynomials for solving fractional PDEs with proportional delays
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 335
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-10-2_011
تاریخ نمایه سازی: 17 فروردین 1400
Abstract:
We apply a new method to solve fractional partial differential equations (FPDEs) with proportional delays. The method is based on expanding the unknown solution of FPDEs with proportional delays by the basis of Bernstein polynomials with unknown control points and uses operational matrices with the least-squares method to convert the FPDEs with proportional de lays to an algebraic system in terms of Bernstein coefficients (control points) approximating the solution of FPDEs. We use the Caputo derivatives of de gree 0 < α ≤ 1 as the fractional derivatives in our work. The main advantage of using this technique is that the method can easily be employed to a variety of FPDEs with or without proportional delays, and also the method offers a very simple and flexible framework for direct approximating of the solution of FPDEs with proportional delays. The convergence analysis of the present method is discussed. We show the effectiveness and superiority of the method by comparing the results obtained by our method with the results of some available methods in two numerical examples.
Keywords:
Fractional partial differential equation , Bernstein polynomial , Operational matrix , Caputo derivative
Authors
Ali Ketabdari
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
Mohammad Hadi Farahi
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
Sohrab Effati
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :