Developing a Bi-objective Mathematical Model to Design the Fish Closed-loop Supply Chain

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 321

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-34-5_019

تاریخ نمایه سازی: 11 اردیبهشت 1400

Abstract:

In recent years, many industries in developed countries have integrated the important process of reverse logistics into their supply chain for different reasons, including growing environmental concerns. Given fish as perishable food, re-employing unused products and waste in each step of the chain constitute a major concern for the decision-makers. The present study is conducted to maximize responsiveness to customer demand and minimize the cost of the fish closed-loop supply chain (CLSC) by proposing a novel mathematical model. To solve this model, the epsilon-constraint method and Lp-metric were employed. Then, the solution methods were compared with each other based on the performance metrics and a statistical hypothesis. The superior method is ultimately determined using the TOPSIS method. The model application is tested on a case study of the trout CLSC in the north of Iran by performing a sensitivity analysis of demand. This analysis showed the promising results of using the proposed solution method and model.

Authors

M. Fasihi

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

R. Tavakkoli-Moghaddam

Industrial Engineering, University of Tehran

S.E. Najafi

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

M. Hajiaghaei-Keshteli

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Puebla, Mexico

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • 1. Akbari-Kasgari, M., Khademi-Zare, H., Fakhrzad, M. B., Hajiaghaei-Keshteli, M., ...
  • 40. Hwang, C.-L., and Yoon, K., "Methods for Multiple Attribute ...
  • نمایش کامل مراجع