Identification of Buried Metal Ore Deposits using Geochemical Anomaly Filtering and Principal Factors of Power Spectrum

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 186

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-12-1_015

تاریخ نمایه سازی: 21 اردیبهشت 1400

Abstract:

Over the past two decades, the frequency domain (FD) of the geochemical data has been studied by some researchers. Metal zoning is one of the challenging subjects in the mining exploration, where a new scenario has been proposed for solving this problem in FD. Three mineralization areas including the Dalli (Cu-Au), Zafarghand (Cu-Mo), and Tanurcheh (Au-Cu) mineralization areas are selected for this investigation. After transferring the surface geochemical data to FD, the geochemical signals obtained are filtered using the wavenumber-based filters. The high and moderate frequency signals are removed, and the residual signals are interpreted by the statistical method of principal component analysis (PCA). In order to discriminate the deep metal ore deposits, the principal factors of elemental power spectrum extracted by PCA are depicted in a novel diagram (PC۱ vs. PC۲). This approach indicates that the geochemical data in the Dalli and Zafarghand deep ore deposits have similar frequency behaviors. The Au, Mo, and Cu elements in these two areas are discriminated from the Au, Mo, and Cu mineralization elements of the Tanurcheh area as a deep non-mineralization zone in this diagram. This new criterion used for distinguishing the buried ore deposits and deep non-mineralization zones is properly confirmed by the exploratory deep drilled boreholes. The geochemical anomaly filtering demonstrates that the strong signatures of deep mineralization are associated with the low frequency geochemical signals at the surface, and the buried mineralization areas with weak surface anomaly can be identified using the geochemical FD data.

Authors

H. Mahdiyanfar

Department of Mining Engineering, University of Gonabad, Gonabad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Sifuzzaman M., Islam M. R, and Ali M.Z., 2009. Application ...
  • Cheng Q., Xu Y., Grunsky E., 1999. Intergrated spatial and ...
  • Cheng Q., Xu Y., and Grunsky E., 2000. Integrated Spatial ...
  • Parsa, M., Maghsoudi, A., Yousefi, M., and Sadeghi, M., 2017. ...
  • Roshanravan B., Tabatabaei S.H., Kreuzer O., Moini H., and Parsa ...
  • Koohzadi F., Afzal P., Jahani D., and Pourkermani M., 2020. ...
  • Cao L., Cheng Q., 2012. Quantification of anisotropic scale invariance ...
  • Identification of geochemical anomalies associated with Cu mineralization by applying spectrum-area multi-fractal and wavelet neural network methods in Shahr-e-Babak mining area, Kerman, Iran [مقاله ژورنالی]
  • Zuo R., Carranza E.J.M, and Cheng Q., 2012. Fractal/multifractal modelling ...
  • Zuo R., Xia Q., Zhang D., 2013. A comparison study ...
  • Zuo R., Wang J., 2015. Fractal/multifractal modeling of geochemical data: ...
  • Ghezelbash R., Maghsoudi A., and Daviran M., 2019. Combination of ...
  • Maghsoudi A., Yousefi M., and Carranza E.J.M., 2017. Multifractal interpolation ...
  • Zuo R., 2011. Identifying geochemical anomalies associated with Cu and ...
  • Wang H., Zuo R., 2015. A comparative study of trend ...
  • Afzal P., Fadakar Alghalandis Y., Moarefvand P., Rashidnejad Omran N., ...
  • Application of spectrum-volume fractal modeling for detection of mineralized zones [مقاله ژورنالی]
  • Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit [مقاله ژورنالی]
  • Shahi H., Ghavami. R, Rouhani A.K., 2016. Detection of deep ...
  • Mahdiyanfar H., 2019. Detection of Mo geochemical anomaly in the ...
  • Johnson R.A., Wichern D.W., 2002. Applied multivariate statistical analysis (Vol. 5, No. ...
  • Parsa M., Maghsoudi A., Carranza E.J.M., and Yousefi M., 2017. ...
  • Lisitsin V., 2015. Spatial data analysis of mineral deposit point ...
  • Parsa M., Maghsoudi A., and Yousefi M., 2018. Spatial analyses ...
  • Jolliffe I.T. and Cadima, J., 2016. Principal component analysis: a ...
  • Naik G.R. ed., 2017. Advances in Principal Component Analysis: Research and ...
  • Cios K.J., Swiniarski R.W., Pedrycz W., and Kurgan L.A., 2007. ...
  • Dobrin M.B., Savit C. H., 1988. Geophysical propecting: McGraw-Hill Book ...
  • Shahi H., Ghavami R., Kamkar Rouhani A., and Asadi-Haroni H., ...
  • Darabi-Golestan F., Ghavami-Riabi R., and Asadi-Harooni H., 2013. Alteration, zoning ...
  • Asadi Haroni H., 2008. First Stage Drilling Report on Dalli ...
  • Asadi Haroni H., 2013. Preliminary Exploration at Zafarghand Porphyry Copper ...
  • Farzamian M., Rouhani A.K., Yarmohammadi A., Shahi H., Sabokbar H.F., ...
  • Karimpour M., 2004. Geological report of Tanurcheh mineralization area, Zarmehr ...
  • Cheng Q., 2014. Vertical distribution of elements in regolith over ...
  • Cohen D.R., Kelley D.L., Anand R., and Coker W.B., 2010. ...
  • Cheng Q., 2012. Singularity theory and methods for mapping geochemical ...
  • Lin J., Kang L., Liu C., Ren T., Zhou H., ...
  • نمایش کامل مراجع