Covert Curriculum in ELT Coursebooks: Evidence from Top Notch and English File Series
Publish place: Applied Research on English Language، Vol: 10، Issue: 1
Publish Year: 1400
Type: Journal paper
Language: English
View: 475
This Paper With 25 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_AREUIT-10-1_005
Index date: 12 May 2021
Covert Curriculum in ELT Coursebooks: Evidence from Top Notch and English File Series abstract
ELT coursebooks are the fertile soil for the transmission of cultural perspectives and also strong tools for shaping L2 learners' behaviors and expectations. This study investigated the existence of covert/ hidden curriculum in two of the widely used ELT coursebook series-- Top Notch and English File . To do so, the content of the series was analyzed via Moran's (2001) model of dimensions of culture and Chao’s (2011) main categories of culture . The results indicated that the series, along with covering different dimensions of culture, are biased mainly in favor of the western products, persons and perspectives, and that despite their global EFL/EIL audience, they vividly base their dialogues, reading and listening on the norms and values of the English-speaking countries, with almost no attention to the local, especially Asian values. The study, discussing the implications of such culture- related covert curricula in the ELT coursebooks, makes relevant suggestions for the design of ELTcoursebooks in the present global village.
Covert Curriculum in ELT Coursebooks: Evidence from Top Notch and English File Series Keywords:
Covert Curriculum in ELT Coursebooks: Evidence from Top Notch and English File Series authors
Jaleh Hassaskhah
Associate Professor, Department of English Language and Literature, University of Guilan, Guilan, Iran
Alireza Abdollahi
MA, Department of English Language & Literature, University of Guilan, Guilan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :