حذف افزونگی داده های خام از مجموعه داده ها، با استفاده از تحلیل مولفه های اصلی تنک
Publish place: Machine Vision and Image Processing، Vol: 6، Issue: 1
Publish Year: 1398
Type: Journal paper
Language: Persian
View: 341
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JMVIP-6-1_002
Index date: 13 May 2021
حذف افزونگی داده های خام از مجموعه داده ها، با استفاده از تحلیل مولفه های اصلی تنک abstract
تحلیل مولفه های اصلی یکی از روش های مطرح به منظور کـاهش ابعـاد مجموعـه داده است که برای داده های یک بعدی و دوبعدی قابل استفاده است. با توجه به تنـک نبـودن بردارهای پایه ، تحلیل مولفه های اصـلی تنک مطرح گردیده است که با حفظ خواص تحلیل مولفـه هـای اصـلی اسـتاندارد، بعضی از درایه های بردارهای پایه را صفر می کند. در این مقاله، با توجه به خاصیت تنکی بردارهای پایه، که سبب بی تاثیر گشتن بعضی از مقادیر مجموعه داده در انتقال به فضای جدید می گردد، دو آلگوریتم به منظور حذف افزونگی از داده های خام، در حالت یک بعدی و دوبعدی ارائه شده است. در الگوریتم یک بعدی، افزونگی بین درایه های سیگنال تشخیص و سپس از تمامی مشاهدات مجموعه حذف می شوند. در الگوریتم دوبعدی اهمیت سطر وستون های تصاویر مجموعه داده، تشخیص و سطر وستون های با اهمیت کمتر به طور مستقیم از داده های خام حذف می شوند. یکی از مهمترین مزیت آلگوریتم های پیشنهادی که به عنوان روش های نمونه برداری غیریکنواخت نیز میتوانند خوانده شوند، حفظ ظاهر سیگنال ها می باشد. پس از حذف افزونگی داده های خام توسط دو الگوریتم ارائه شده، می توان از داده های جدید با ابعاد کمتر در کاربردهای دیگری همچون بازشناسی مجموعه داده، فشرده سازی و ... استفاده کرد
حذف افزونگی داده های خام از مجموعه داده ها، با استفاده از تحلیل مولفه های اصلی تنک Keywords:
حذف افزونگی از داده های خام , تحلیل مولفه های اصلی تنک , تحلیل مولفه های اصلی دوبعدی دوطرفه تنک , استخراج ویژگی
حذف افزونگی داده های خام از مجموعه داده ها، با استفاده از تحلیل مولفه های اصلی تنک authors
علی اصغر شریفی نجف آبادی
دانشجوی کارشناسی ارشد مخابرات، دانشکده مهندسی برق، دانشگاه شهید بهشتی
فرح ترکمنی آذر
آزمایشگاه پردازش سیگنال های دیجیتال، دانشکده مهندسی برق، دانشگاه شهید بهشتی