بررسی تشخیص بیماری دیابت بر اساس اطلاعات مستخرج از سیگنال ECG با استفاده از شبکه های عصبی مصنوعی
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: Persian
View: 492
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_SKUMS-19-4_007
تاریخ نمایه سازی: 12 خرداد 1400
Abstract:
زمینه و هدف: بیماری دیابت یکی از شایع ترین بیماری های دنیا شناخته شده است. یکی از مشکلات اساسی مربوط به این بیماری عدم تشخیص به موقع و صحیح آن می باشد. هدف این پژوهش ارائه روش جدیدی برای تشخیص بیماری دیابت است و قصد دارد برای اولین بار ارتباط تصاویر ECG با تشخیص بیماری دیابت به کمک شبکه عصبی مصنوعی و الگوریتم های داده کاوی را بررسی کند.
روش بررسی: در این مطالعه ۸ بیمار دیابتی و ۶۴ فرد سالم حضور داشتند. الکتروکاردیوگرافی برای تمام افراد انجام گرفت. اطلاعات مورد نیاز از تصاویر ECG شامل: نام بیمار، سن، HR، p، t، RR، PP، P، PR، qt،qtcb استخراج و در پایگاه داده جمع آوری شد. برای طبقه بندی بیماران از شبکه های عصبی احتمالی و الگوریتم های استاندارد داده کاوی استفاده شده است. داده ها از طریق الگوریتم های داده کاوی و روش های متفاوت کلاس بندی مورد بررسی و ارزیابی قرار گرفتند و نتایج هر یک با توجه به نرخ صحیح مقایسه شدند. از نرم افزار weka برای رده بندی ها استفاده شده است.
یافته ها: دقت شناسایی الگوریتم های مبتنی بر قوانین و شبکه عصبی، نسبت به الگوریتم های درخت تصمیم و الگوریتم های مبتنی بر فاصله بالاتر و نتایج بهتری در تشخیص بیماری دیابت نشان دادند. بهترین نرخ شایستگی در الگوریتم Consistency Subset Eval با میزان ۰/۸۹ بود و موج QRS به عنوان بهترین انتخاب در همه الگوریتم ها گزارش می شود. ارزیابی داده های افراد دیابتی و غیر دیابتی با استفاده از الگوریتم شبکه های عصبی احتمالی نرخ صحیحی ۹۵% را نشان داد. همچنین الگوریتم KNN کمترین پیچیدگی زمانی را نشان داد.
نتیجه گیری: مدل مبتنی بر قوانین دقت بالاتری نسبت به کلیه الگوریتم های طبقه بندی داده کاوی مورد استفاده در پژوهش نشان داد.
Keywords:
Diabetes mellitus , Artificial intelligence , Neural networks , Electrocardiography , Prediction models , بیماری دیابت , هوش مصنوعی , شبکه عصبی , الکتروکاردیوگرافی , مدل های پیش بینی
Authors
مرضیه نظری
دانشگاه آزاد اسلامی، واحد شهرکرد
بهزاد زمانی دهکردی
دانشگاه آزاد اسلامی واحد شهرکرد
فرشاد کیومرثی دهکردی
دانشگاه آزاد اسلامی واحد شهرکرد
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :