Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Ranking and Clustering Iranian Provinces Based on COVID-۱۹ Spread: K-Means Cluster Analysis

Year: 1399
COI: JR_JEHSD-6-1_004
Language: EnglishView: 76
This Paper With 12 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 12 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Farzan Madadizadeh - Center For Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Reyhane Sefidkar - Center For Healthcare Data Modeling, Departments of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Abstract:

Introduction: The Coronavirus has crossed geographical borders. This study was performed to rank and cluster Iranian provinces based on coronavirus disease (COVID-۱۹) recorded cases from February ۱۹ to March ۲۲, ۲۰۲۰. Materials and Methods: This cross-sectional study was conducted in ۳۱ provinces of Iran using the daily number of confirmed cases. Cumulative Frequency (CF) and Adjusted CF (ACF) of new cases for each province were calculated. Characteristics of provinces like population density, area, distance from the original epicenter (Qom province), altitude from sea level, and Human Development Index (HDI) were used to investigate their correlation with ACF values. Spearman correlation coefficient and K-Means Cluster Analysis (KMCA) were used for data analysis. Statistical analyses were conducted in RStudio. The significant level was set at ۰.۰۵. Results: There were ۲۱,۶۳۸ infected cases with COVID-۱۹ in Iran during the study period. Significant correlations between ACF values and province HDI (r = ۰.۴۶) and distance from the original epicenter (r = -۰.۶۶) was observed. KMCA, based on both CF and ACF values, classified provinces into ۱۰ clusters. In terms of ACF, the highest level of spreading belonged to cluster ۱ (Semnan and Qom provinces), and the lowest one belonged to cluster ۱۰ (Kerman, Sistan and Baluchestan, Chaharmahal and Bakhtiari and Busher provinces). Conclusion: This study showed that ACF gives a real picture of each provincechr('۳۹')s spreading status. KMCA results based on ACF identify the provinces that have critical conditions and need attention. Therefore, using this accurate model to identify hot spots to perform quarantine is recommended.

Keywords:

Paper COI Code

This Paper COI Code is JR_JEHSD-6-1_004. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1230205/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Madadizadeh, Farzan and Sefidkar, Reyhane,1399,Ranking and Clustering Iranian Provinces Based on COVID-۱۹ Spread: K-Means Cluster Analysis,https://civilica.com/doc/1230205

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus ...
  • Chen N, Zhou M, Dong X, et al. Epidemiological and ...
  • Hsu LY, Chia PY, Lim JFY. The novel coronavirus ( ...
  • Shereen MA, Khan S, Kazmi A, et al. COVID-۱۹ infection: ...
  • Dehkordi AH, Alizadeh M, Science C, et al. Understanding epidemic ...
  • Chang L, Yan Y, Wang L. Coronavirus disease ۲۰۱۹ : coronaviruses ...
  • Rahimzadeh G, Ekrami Noghabi M, Kadkhodaei Elyaderani F, et al. ...
  • Phelan A, Katz R, Gostin L. The novel coronavirus originating ...
  • Sohrabi C, Alsafi Z, Neill NO, et al. World health ...
  • CDC. Who are at higher risk for severe illness [Internet]. ...
  • Wilson ME, Chen LH. Travelers give wings to novel coronavirus ...
  • Worldmapper. Covid-۱۹ (Coronavirus) Update: Chronology of a Pandemic. Available from: ...
  • Mahmudan A. Clustering of district or city in central java ...
  • Doroshenko A. Analysis of the distribution of COVID-۱۹ in italy ...
  • Arpaci I, Alshehabi S, Al-emran M, et al. Analysis of ...
  • Maugeri A, Barchitta M. A clustering approach to classify italian ...
  • Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus–a ...
  • Science N, Phenomena C, Reza M, et al. Fuzzy clustering ...
  • Dunn H, Quinn L, Corbridge S, et al. Cluster analysis ...
  • Bazargan M, Amirfakhriyan M. Geographical analysis of COVID-۱۹ epidemiology in ...
  • Ramírez-aldana R, Gomez-verjan JC, Bello- OY. Spatial analysis of COVID-۱۹ ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: علوم پزشکی
Paper count: 3,482
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support