لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
M. R. K. H. Saberi and M. R. Hasani Ahangar, ...
S. Krig, “Feature learning and deep learning architecture survey,” in ...
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT ...
S. P. M. Zakeri Nasrabadi۱, “Automatic Test Data Generation in ...
D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, ...
C. C. Chatterjee, “Basics of the Classic CNN,” https://towardsdatascience.com/basics-of-the-classic-cnn-a۳dce۱۲۲۵add (accessed ...
“Convolutional Neural Networks (CNNs / ConvNets),” https://cs۲۳۱n.github.io/convolutional-networks/ (accessed ...
Y. Sun, A. K. Wong, and M. S. Kamel, “Classification ...
M. Buda, A. Maki, and M. A. Mazurowski, “A systematic ...
J. v. Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische annalen, vol. ...
A. W. Tucker and R. D. Luce, Contributions to the ...
A. A. M. Forooghy and M. Bagheri, “A Decision-Making Model ...
I. Goodfellow et al., “Generative adversarial nets,” in Advances in ...
E. L. Denton, S. Chintala, and R. Fergus, “Deep generative ...
I. Goodfellow, “NIPS ۲۰۱۶ tutorial: Generative adversarial networks,” arXiv preprint ...
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning ...
M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv ...
J. An and S. Cho, “Variational autoencoder based anomaly detection ...
S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative ...
A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper, and A. ...
T. G. Dietterich, “Ensemble learning,” The handbook of brain theory ...
L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of ...
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, ...
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks ...
H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-VGG۱۶ CNN ...
F. C. e. al., “Keras” https://keras.io (accessed) ...
M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous ...
L. ZeBlemoyer. “Linear Regression Bias / Variance Tradeoff.” https://courses.cs.washington.edu/courses/cse۵۴۶/ (accessed ...
Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” ...
J. Hermans, “On Scalable Deep Learning and Parallelizing Gradient Descent,” ...
D. Masters and C. Luschi, “Revisiting Small Batch Training for ...
N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and ...
B. Graham, “Kaggle diabetic retinopathy detection competition report,” University of ...
M. Antony and S. Brüggemann, “Kaggle Diabetic Retinopathy Detection; Team ...
S. Qummar et al., “A deep learning ensemble approach for ...
[۳۶] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, ...
نمایش کامل مراجع