سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

Publish Year: 1398
Type: Journal paper
Language: English
View: 226

This Paper With 36 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CGASAT-11-0_003

Index date: 14 September 2021

A convex combinatorial property of compact sets in the plane and its roots in lattice theory abstract

K. Adaricheva and M. Bolat have recently proved that if \,\mathcal U_0 and \,\mathcal U_1 are circles in a triangle with vertices A_0,A_1,A_2, then there exist j\in \{0,1,2\} and k\in\{0,1\} such that \,\mathcal U_{1-k} is included in the convex hull of \,\mathcal U_k\cup(\{A_0,A_1, A_2\}\setminus\{A_j\}). One could say disks instead of circles.Here we prove the existence of such a j and k for the more general case where \,\mathcal U_0 and \,\mathcal  U_1 are compact sets in the plane such that \,\mathcal U_1 is obtained from \,\mathcal U_0 by a positive homothety or by a translation. Also, we give a short survey to show how lattice theoretical antecedents, including a series of papers on planar semimodular lattices by G. Grätzer and E. Knapp, lead to our result.

A convex combinatorial property of compact sets in the plane and its roots in lattice theory Keywords:

A convex combinatorial property of compact sets in the plane and its roots in lattice theory authors

Gábor Czédli

Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere ۱, H۶۷۲۰ Hungary

Árpád Kurusa

Bolyai Institute, University of Szeged, Szeged, Aradi vértanúk tere ۱, Hungary H۶۷۲۰

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Adaricheva, K., Representing finite convex geometries by relatively convex sets, ...
Adaricheva, K. and Bolat, M., Representation of convex geometries by ...
Adaricheva, K. and Czédli, G., Note on the description of ...
Adaricheva, K.V., Gorbunov, V.A., and Tumanov, V.I., Join semidistributive lattices ...
Adaricheva, K. and Nation, J.B., Convex geometries, in "Lattice Theory: ...
Bogart, K.P., Freese, R., and Kung, J.P.S., "The Dilworth Theorems. ...
Bonnesen, T. and Fenchel, W., "Theory of convex bodies", Translated ...
Czédli, G., The matrix of a slim semimodular lattice, Order ...
Czédli, G., Representing homomorphisms of distributive lattices as restrictions of ...
Czédli, G., Coordinatization of join-distributive lattices, Algebra Universalis ۷۱(۴) (۲۰۱۴), ...
Czédli, G., Finite convex geometries of circles, Discrete Math. ۳۳۰ ...
Czédli, G., Patch extensions and trajectory colorings of slim rectangular ...
Czédli, G., A note on congruence lattices of slim semimodular ...
Czédli, G., Characterizing circles by a convex combinatorial property, Acta ...
Czédli, G., An easy way to a theorem of Kira ...
Czédli, G., Celebrating professor George A. Grätzer, Categories and General ...
Czédli, G., An interview with George A. Grätzer, Categories and ...
Czédli, G., Circles and crossing planar compact convex sets, submitted ...
Czédli, G. and Grätzer, G., Notes on planar semimodular lattices ...
Czédli, G. and Grätzer, G., Planar semimodular lattices: structure and ...
Czédli, G., Grätzer, G., and Lakser, H., Congruence structure of ...
Czédli, G. and Kincses, J., Representing convex geometries by almost-circles, ...
Czédli, G. and Makay, G.: Swing lattice game and a ...
Czédli, G., Ozsvárt, L., and Udvari, B., How many ways ...
Czédli, G. and Schmidt, E.T., The Jordan-Hölder theorem with uniqueness ...
Czédli, G. and Schmidt, E.T., Slim semimodular lattices I, A ...
Czédli, G. and Schmidt, E.T., Slim semimodular lattices II, A ...
Czédli, G. and Stachó, L.L., A note and a short ...
Dilworth, R.P., Lattices with unique irreducible decompositions, Ann. of Math. ...
Edelman, P.H., Meet-distributive lattices and the anti-exchange closure, Algebra Universalis ...
Edelman, P.H. and Jamison, R.E., The theory of convex geometries, ...
Erdos, P. and Straus, E.G., Über eine geometrische Frage von ...
Fejes-Tóth, L., Eine Kennzeichnung des Kreises, Elem. Math. ۲۲ (۱۹۶۷), ...
Freese, R., Ježek, J., and Nation, J.B., "Free lattices", Mathematical ...
Funayama, N., Nakayama, T., On the distributivity of a lattice ...
Grätzer, G., "The Congruences of a Finite Lattice. A Proof-by-picture ...
Grätzer, G., Planar semimodular lattices: congruences, in "Lattice Theory: Special ...
Grätzer, G., Congruences in slim, planar, semimodular lattices: the swing ...
Grätzer, G., On a result of Gábor Czédli concerning congruence ...
Grätzer, G., "The Congruences of a Finite Lattice. A Proof-by-picture ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices ...
Grätzer, G. and Knapp, E., A note on planar semimodular ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices ...
Grätzer, G. and Knapp, E., Notes on planar semimodular lattices ...
Grätzer, G. and Nation, J.B., A new look at the ...
Grätzer, G. and Schmidt, E.T., On congruence lattices of lattices, ...
Grätzer, G. and Schmidt, E.T., An extension theorem for planar ...
Grätzer, G. and Schmidt, E.T., A short proof of the ...
Hüsseinov, F., A note on the closedness of the convex ...
Jónsson, B. and Nation, J.B., A report on sublattices of ...
Kashiwabara, K., Nakamura, M., and Okamoto, Y., The affine representation ...
Kincses, J.: On the representation of finite convex geometries with ...
Latecki, L., Rosenfeld., A., and Silverman, R., Generalized convexity: CP۳ ...
Monjardet, B., A use for frequently rediscovering a concept, Order ...
Richter, M. and Rogers, L.G., Embedding convex geometries and a ...
Schneider, R., "Convex Bodies: The Brunn-Minkowski Theory", Encyclopedia of mathematics ...
Toponogov, V.A., "Differential Geometry of Curves and Surfaces, A Concise ...
Wehrung, F., A solution to Dilworth’s congruence lattice problem, Adv. ...
Yaglom, I.M. and Boltyanskiˇı, V.G., "Convex Figures", English translation, Holt, ...
نمایش کامل مراجع