سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Completeness results for metrized rings and lattices

Publish Year: 1398
Type: Journal paper
Language: English
View: 156

This Paper With 20 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_CGASAT-11-0_007

Index date: 14 September 2021

Completeness results for metrized rings and lattices abstract

The Boolean ring B of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, \{0\}) that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, B is known to be complete in its metric. Together, these facts answer a question posed by J. Gleason. From this example, rings of arbitrary characteristic with the same properties are obtained. The result that B is complete in its metric is generalized to show that if L is a lattice given with a metric satisfying identically either the inequality d(x\vee y,\,x\vee z)\leq d(y,z) or the inequality d(x\wedge y,x\wedge z)\leq d(y,z), and if in L every increasing Cauchy sequence converges and every decreasing Cauchy sequence converges, then every Cauchy sequence in L converges; that is, L is complete as a metric space. We show by example that if the above inequalities are replaced by the weaker conditions d(x,\,x\vee y)\leq d(x,y), respectively d(x,\,x\wedge y)\leq d(x,y), the completeness conclusion can fail. We end with two open questions.

Completeness results for metrized rings and lattices Keywords:

Complete topological ring without closed prime ideals , measurable sets modulo sets of measure zero , lattice complete under a metric

Completeness results for metrized rings and lattices authors

George Bergman

University of California, Berkeley

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Cohn, P. M., "Basic Algebra. Groups, Rings and Fields", Springer, ...
Fremlin, D. H., "Measure Theory. Vol. ۳. Measure Algebras", corrected ...
Halmos, P. R., "Measure Theory", D. Van Nostrand Company, ۱۹۵۰ ...
Lang, S., "Real and Functional Analysis. Third edition", Graduate Texts ...
Mennucci, A., The metric space of (measurable) sets, and Carathéodory’s ...
نمایش کامل مراجع