Body of Optimal Parameters in the Weighted Finite Element ‎Method for the Crack Problem

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 169

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-7-4_025

تاریخ نمایه سازی: 18 مهر 1400

Abstract:

In this paper, a high-accuracy weighted finite element method is constructed and investigated for finding an approximate solution of the crack problem. We consider an approximation of the Lamé system in the domain with the reentrant corner ۲π at the boundary. A new concept of definition of the solution of the problem is introduced. It allows us to suppress the influence of the singularity on the accuracy of finding an approximate solution, in contrast to the classical approach. We have introduced a weight function into the basis of the finite element method. The accuracy of finding an approximate solution by the weighted finite element method depends on three input parameters. We created an algorithm and establish the body of optimal parameters in the weighted finite element method for the crack problem. The choice of parameters from this set allows us to accurately and stability find an approximate solution with the smallest deviation from the best error. This is required to generate industrial codes.

Keywords:

Elasticity problem with a crack , Weighted finite element method , body of optimal parameters‎

Authors

Viktor A. Rukavishnikov

Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, Kim Yu Chen St., ۶۵, Khabarovsk, ۶۸۰۰۰۰, Russia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Gdoutos, E.E., Fracture Mechanics Criteria and Applications, Vol. ۱۰ of ...
  • Szabó, B., Babuška, I., Finite element analysis, John Wiley & ...
  • Kondrat’ev, V.A. Boundary-value problems for elliptic equations in domains with ...
  • Mazya, V.G., Plamenevskij, B.A., Lp-estimates of solutions of elliptic boundary ...
  • Grisvard, P., Boundary Value Problems in Non-Smooth Domains, Pitman, London, ...
  • Dauge, M., Elliptic Boundary Value Problems on Corner Domains, Vol. ...
  • Ciarlet, P., The Finite element method for elliptic problems, North-Holland, ...
  • Rukavishnikov, V.A., On the differential properties of -generalized solution of ...
  • Rukavishnikov, V.A., On the uniqueness of the -generalized solution of ...
  • Rukavishnikov, V.A., On the existence and uniqueness of an -generalized ...
  • Rukavishnikov, V.A., Rukavishnikova, E.I., Existence and uniqueness of an -generalized ...
  • Rukavishnikov, V.A., Rukavishnikova, E.I., On the Dirichlet problem with corner ...
  • Rukavishnikov, V.A., Rukavishnikova, E.I., Finite-element method for the ۱st boundary-value ...
  • Rukavishnikov, V.A., Rukavishnikova, H.I., The finite element method for a ...
  • Rukavishnikov, V.A., Mosolapov A.O., New numerical method for solving time-harmonic ...
  • Rukavishnikov, V.A., Mosolapov, A.O., Weighted edge finite element method for ...
  • Rukavishnikov, V.A., Rukavishnikov, A.V., Weighted finite element method for the ...
  • Rukavishnikov, V.A., Mosolapov, A.O., Rukavishnikova, E.I., Weighted finite element method ...
  • Zeng, W., Liu, G.R., Smoothed finite element methods (S-FEM): an ...
  • Moës, N., Dolbow, J., Belytschko, T., A finite element method ...
  • Nicaise, S., Renard, Y., Chahine, E., Optimal convergence analysis for ...
  • Sukumar, N., Dolbow, J.E., Moës, N., Extended finite element method ...
  • Francis, A., Ortiz-Bernardin, A., Bordas, S.P.A., Natarajan, S., Linear smoothed ...
  • Chen, J., Zhou, X., Zhou, L., Berto, F., Simple and ...
  • Zhou, X., Chen, J., Berto, F., XFEM based node scheme ...
  • Zeng, W., Liu, G.R., Jiang, C., Dong, X.W., Chen, H.D., ...
  • Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P, ...
  • Bhowmick, S., Liu, G.R., On singular ES-FEM for fracture analysis ...
  • Chen, H., Wang, Q., Liu, G.R., Wang, Y., Sun, J., ...
  • Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S., Rabczuk, T., ...
  • Zeng, W., Liu, G.R., Li, D., Dong, X.W., A smoothing ...
  • Surendran, M., Natarajan, S., Bordas, S.P.A., Palani, G.S., Linear smoothed ...
  • Belytschko, T., Gu, L., Lu, Y.Y., Fracture and crack growth ...
  • Nguyen, N.T., Bui, T.Q., Zhang, C.Z., Truong, T.T., Crack growth ...
  • Khosravifard, A., Hematiyan, M.R., Bui, T.Q., Do, T.V., Accurate and ...
  • Racz, D., Bui, T.Q., Novel adaptive meshfree integration techniques in ...
  • Aghahosseini, A., Khosravifard, A., Bui, T.Q., Efficient analysis of dynamic ...
  • Ma, W., Liu, G., Ma, H., A smoothed enriched meshfree ...
  • Zhou X., Jia Z., Wang L., A field-enriched finite element ...
  • Zhou, X., Wang, L., A field-enriched finite element method for ...
  • Wang L., Zhou X., A field-enriched finite element method for ...
  • Grisvard, P., Singularités en elasticité, Archive for Rational Mechanics and ...
  • Rukavishnikov, V.A., The Dirichlet problem for a second-order elliptic equation ...
  • Rukavishnikov, V.A., Kuznetsova, E.V., Coercive estimate for a boundary value ...
  • Rukavishnikov, V.A., Weighted FEM for two-dimensional elasticity problem with corner ...
  • نمایش کامل مراجع