A New Multi-Wave Cellular Learning Automata and Its Application for Link Prediction Problem in Social Networks

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 207

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JCR-14-1_001

تاریخ نمایه سازی: 18 مهر 1400

Abstract:

Link Prediction (LP) is one of the main research areas in Social Network Analysis (SNA). The problem of LP can help us understand the evolution mechanism of social networks, and it can be used in different applications such as recommendation systems, bioinformatics, and marketing. Social networks can be shown as a graph, and LP algorithms predict future connections by using previous network information. In this paper, a multi-wave cellular learning automaton (MWCLA) is introduced and used to solve the LP problem in social networks. The proposed model is a new CLA with a connected structure and a module of LAs in each cell where a cell module’s neighbors are its successors. In the MWCLA method for improving convergence speed and accuracy, multiple waves have been used parallelly in the network. By using multiple waves, different information of the network can be considered for predicting links in the social network. Here we show that the model converges upon a stable and compatible configuration. Then for the LP problem, it has been demonstrated that MWCLA produces much better results than other approaches compared to some state-of-the-art methods.

Authors

Mozhdeh Khaksar Manshad

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Mohammad Reza Meybodi

Amirkabir University of Technology, Tehran, Iran

Afshin Salajegheh

Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :