Some results on the comaximal ideal graph of a commutative ring
Publish place: Transactions on Combinatorics، Vol: 5، Issue: 4
Publish Year: 1395
Type: Journal paper
Language: English
View: 144
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COMB-5-4_002
Index date: 20 November 2021
Some results on the comaximal ideal graph of a commutative ring abstract
Let R be a commutative ring with unity. The comaximal ideal graph of R, denoted by \mathcal{C}(R), is a graph whose vertices are the proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I_1 and I_2 are adjacent if and only if I_1 +I_2 = R. In this paper, we classify all comaximal ideal graphs with finite independence number and present a formula to calculate this number. Also, the domination number of \mathcal{C}(R) for a ring R is determined. In the last section, we introduce all planar and toroidal comaximal ideal graphs. Moreover, the commutative rings with isomorphic comaximal ideal graphs are characterized. In particular we show that every finite comaximal ideal graph is isomorphic to some \mathcal{C}(\mathbb{Z}_n).
Some results on the comaximal ideal graph of a commutative ring Keywords:
Some results on the comaximal ideal graph of a commutative ring authors
Hamid Reza Dorbidi
University of Jiroft,Jiroft, Kerman, Iran
Raoufeh Manaviyat
Payame Noor University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :