Bounding the rainbow domination number of a tree in terms of its annihilation number
Publish place: Transactions on Combinatorics، Vol: 2، Issue: 3
Publish Year: 1392
Type: Journal paper
Language: English
View: 161
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_COMB-2-3_003
Index date: 20 November 2021
Bounding the rainbow domination number of a tree in terms of its annihilation number abstract
A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set \{1,2\} such that for any vertex v\in V(G) with f(v)=\emptyset the condition \bigcup_{u\in N(v)}f(u)=\{1,2\} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value \omega(f)=\sum_{v\in V}|f (v)|. The 2-rainbow domination number of a graph G, denoted by \gamma_{r2}(G), is the minimum weight of a 2RDF of G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T with at least two vertices, \gamma_{r2}(T)\le a(T)+1.
Bounding the rainbow domination number of a tree in terms of its annihilation number Keywords:
Bounding the rainbow domination number of a tree in terms of its annihilation number authors
Nasrin Dehgardi
Azarbaijan Shahid Madani University
Mahmoud Sheikholeslami
Azarbaijan Shahid Madani University
Abdollah Khodkar
University Of West Georgia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :