An Optimization-based Learning Black Widow Optimization Algorithm for Text Psychology

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 82

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACET-7-1_006

تاریخ نمایه سازی: 5 دی 1400

Abstract:

In recent years, social networks' growth has led to an increase in these networks' content. Therefore, text mining methods became important. As part of text mining, Sentiment analysis means finding the author's perspective on a particular topic. Social networks allow users to express their opinions and use others' opinions in other people's opinions to make decisions. Since the comments are in the form of text and reading them is time-consuming. Therefore, it is essential to provide methods that can provide us with this knowledge usefully. Black Widow Optimization (BWO) is inspired by black widow spiders' unique mating behavior. This method involves an exclusive stage, namely, cannibalism. For this reason, at this stage, species with an inappropriate evaluation function are removed from the circle, thus leading to premature convergence. In this paper, we first introduced the BWO algorithm into a binary algorithm to solving discrete problems. Then, to reach the optimal answer quickly, we base its inputs on the opposition. Finally, to use the algorithm in the property selection problem, which is a multi-objective problem, we convert the algorithm into a multi-objective algorithm. The ۲۳ well-known functions were evaluated to evaluate the performance of the proposed method, and good results were obtained. Also, in evaluating the practical example, the proposed method was applied to several emotion datasets, and the results indicate that the proposed method works very well in the psychology of texts.

Keywords:

text psychology , Meta-Heuristic Algorithm , Feature Selection , black widow optimization algorithm

Authors

Ali Hosseinalipour

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, IRAN

Farhad Soleimanian Gharehchopogh

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, IRAN

mohammad masdari

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.

ALi Khademi

Department of Psychology Science, Urmia Branch, Islamic Azad University, Urmia, IRAN.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Gharehchopogh, F.S. and H. Gholizadeh, A comprehensive survey: Whale Optimization ...
  • Gharehchopogh, F.S., I. Maleki, and Z.A. Dizaji, Chaotic vortex search ...
  • Abdollahzadeh, B. and F.S. Gharehchopogh, A multi-objective optimization algorithm for ...
  • An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems [مقاله ژورنالی]
  • Mohmmadzadeh, H. and F.S. Gharehchopogh, An efficient binary chaotic symbiotic ...
  • Rahnema, N. and F.S. Gharehchopogh, An improved artificial bee colony ...
  • Hosseinalipour, A., et al., A novel binary farmland fertility algorithm ...
  • Sayed, S.A.-F., E. Nabil, and A. Badr, A binary clonal ...
  • Gharehchopogh, F.S., H. Shayanfar, and H. Gholizadeh, A comprehensive survey ...
  • Zorarpacı, E. and S.A. Özel, A hybrid approach of differential ...
  • Hosseinalipour, A., et al., Toward text psychology analysis using social ...
  • Dong, H., et al., A novel hybrid genetic algorithm with ...
  • Liu, B. and L. Zhang, A survey of opinion mining ...
  • Nasukawa, T. and J. Yi. Sentiment analysis: Capturing favorability using ...
  • Asghar, M.Z., et al., A review of feature extraction in ...
  • Saeys, Y., I. Inza, and P. Larrañaga, A review of ...
  • Sharma, M. and P. Kaur, A Comprehensive Analysis of Nature-Inspired ...
  • Emine, B. and E. Ülker, An efficient binary social spider ...
  • Hayyolalam, V. and A.A.P. Kazem, BWO algorithm: A novel meta-heuristic ...
  • Pang, B., L. Lee, and S. Vaithyanathan, Thumbs up? Sentiment ...
  • Arora, S. and P. Anand, Binary butterfly optimization approaches for ...
  • Hussien, A.G., et al., S-shaped binary whale optimization algorithm for ...
  • Bennasar, M., Y. Hicks, and R. Setchi, Feature selection using ...
  • Mirjalili, S., Dragonfly algorithm: a new meta-heuristic optimization technique for ...
  • Yang, X.S. and A.H. Gandomi, Bat algorithm: a novel approach ...
  • Leskovec, J., A. Rajaraman, and J.D. Ullman, Mining of massive ...
  • Mafarja, M.M. and S. Mirjalili, Hybrid whale optimization algorithm with ...
  • Liao, T.W. and R. Kuo, Five discrete symbiotic organisms search ...
  • Mafarja, M., et al., Evolutionary population dynamics and grasshopper optimization ...
  • Rajamohana, S. and K. Umamaheswari, Hybrid approach of improved binary ...
  • Azar, A.T., et al., A random forest classifier for lymph ...
  • نمایش کامل مراجع