Influence of Blade Lean on Performance and Shock Wave/Tip Leakage Flow Interaction in a Transonic Compressor Rotor

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 217

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-15-1_014

تاریخ نمایه سازی: 8 دی 1400

Abstract:

Blade lean has been extensively used in axial compressor stators to control flow separations, but its influence mechanism on transonic compressor rotors remains to be revealed. The aim of this study is to numerically explore the influence of blade lean on the performance and shock wave/tip leakage flow interaction in a transonic compressor rotor. The effects of leaned pattern (positively lean and negatively lean), leaned angle and leaned height were studied. Results showed that, compared with baseline configuration, the efficiency and total pressure ratio of the entire constant rotating speed line of positively leaned rotor were both decreased. The absolute value of peak efficiency was reduced by as much as ۴.۳۴% at ۲۰° lean angle, whereas the maximum reduction of peak total pressure ratio was ۰.۱ at ۲۰° lean angle. The tip leakage flow streamlines of baseline transonic rotor can be divided into two parts, i.e., the primary vortex and secondary vortex which arises after the shock. Due to shock/tip leakage vortex interaction, the primary vortex enlarged and low-momentum region showed up after the shock; under near stall (NS) condition, tip leakage vortex breakdown occurred after interacting with shock. As positively leaned angle increased, the shock and the shock/tip leakage vortex interaction point moved upstream. In addition, the phenomenon of tip leakage vortex breakdown was enhanced. For negatively leaned rotors, as negatively leaned angle increased, the peak efficiency and total pressure ratio showed a tendency of first increasing and then decreasing. At ۵° leaned angle, the peak efficiency was increased by ۰.۸% at most, and the maximum increment of total pressure ratio was ۰.۰۵ at ۵° leaned angle. Besides, the loading of blade tip reduced and the loading moved toward trailing edge, resulting in the downstream movements of primary vortex, shock front and shock/tip leakage vortex interaction location. The results may help to improve the near tip flow field of transonic compressor rotor with leaned blade technology.

Keywords:

Blade lean , Tip leakage vortex , Shock/Tip leakage flow interaction , Transonic compressor

Authors

Z. Cao

School of Power and Energy, Northwestern Polytechnical University, Xi’an ۷۱۰۰۷۲, China

X. Zhang

School of Power and Energy, Northwestern Polytechnical University, Xi’an ۷۱۰۰۷۲, China

Y. Liang

School of Power and Energy, Northwestern Polytechnical University, Xi’an ۷۱۰۰۷۲, China

B. Liu

School of Power and Energy, Northwestern Polytechnical University, Xi’an ۷۱۰۰۷۲, China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ameri, A. A. (۲۰۰۹). NASA Rotor ۳۷ CFD Code Validation ...
  • Numerical Investigations into the Origin of Tip Unsteadiness in a Transonic Compressor [مقاله ژورنالی]
  • Performance Enhancement of a Transonic Axial Flow Compressor with Circumferential Casing Grooves to Improve the Stall Margin [مقاله ژورنالی]
  • Benini, E. and R. Biollo (۲۰۰۷). Aerodynamics of Swept and ...
  • Biollo, R. and E. Benini (۲۰۰۹). Shock/Boundary-Layer/Tip-Clearance Interaction in a ...
  • Breugelmans, F. A. E. (۱۹۸۵). Influence of Incidence Angle on ...
  • Cao, Z., B. Liu and T. Zhang (۲۰۱۷). Influence of ...
  • Cao, Z., X. Gao and B. Liu (۲۰۱۹). Control Mechanisms ...
  • Chunill, H. and C. Rabe Douglas (۲۰۰۴). Role of Tip-leakage ...
  • Deich, M. E., A. B. Gubalev and G. A. Filippov ...
  • Denton, J. D. and L. Xu (۲۰۰۲). The Effects of ...
  • Du, J., F. Lin and J. Chen (۲۰۱۳). Flow Structures ...
  • Fischer, A., W. Riess and J. R. Seume (۲۰۰۴). Performance ...
  • Hofmann, W. and J. Ballmann (۲۰۰۲). Tip Clearance Vortex Development ...
  • Kan, X., W. Wu and J. Zhong (۲۰۲۰). Effects of ...
  • Li, H., Y. Liu and L. Ji (۲۰۱۸). Effect of ...
  • Liu, Y., Y. Tang and P.G. Tucker (۲۰۲۰). Modification of ...
  • Oyama, A., M. Liou and S. Obayashi (۲۰۰۳). High-fidelity Swept ...
  • Perrin, G. and F. Leboeuf (۱۹۹۲). Analysis of Three-dimensional Viscous ...
  • Qiao, B., Y. Ju and C. Zhang (۲۰۱۹). Numerical Investigation ...
  • Razavi, S. R. and M. Boroomand (۲۰۱۴). Numerical and Performance ...
  • Sasaki, T. and F. A. E. Breugelmans (۱۹۹۸). Comparison of ...
  • Shi, K. and S. Fu (۲۰۱۳). Study of Shock/Blade Tip ...
  • Suder, K.L. (۱۹۹۶). Experimental Investigation of the Flow Field in ...
  • Sun, S., S, Wang and S. Chen (۲۰۱۹). The Impact ...
  • Sun, S., S. Wang and S. Chen (۲۰۲۰). The Influence ...
  • Sun J., X. Ottavy and Y. Liu (۲۰۲۱). Corner Separation ...
  • Takahashi, Y., H. Hamatake and Y. Katoh (۲۰۰۵). Experimental and ...
  • Tang, Y., Y. Liu and L. Lu (۲۰۲۰). Passive Separation ...
  • Wang, Z., S. Lai and W. Xu (۱۹۸۱). Aerodynamic Calculation ...
  • Welngold, H. D., R. J. Neubert and R. F. Behlke ...
  • Welngold, H. D., R. J. Neubert and R. F. Behlke ...
  • Yamada, K., M. Furukawa and T. Nakano (۲۰۰۴). Unsteady Three-dimensional ...
  • Investigation on the Mechanism of Blade Tip Recess Improving the Aerodynamic Performance of Transonic Axial Flow Compressor [مقاله ژورنالی]
  • نمایش کامل مراجع